Description: The set G of the "simple pseudographs" with a fixed set of vertices V and the class P of subsets of the set of pairs over the fixed set V are equinumerous. (Contributed by AV, 27-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uspgrsprf.p | ⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) | |
uspgrsprf.g | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } | ||
Assertion | uspgrspren | ⊢ ( 𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrsprf.p | ⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) | |
2 | uspgrsprf.g | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } | |
3 | 1 2 | uspgrbispr | ⊢ ( 𝑉 ∈ 𝑊 → ∃ 𝑓 𝑓 : 𝐺 –1-1-onto→ 𝑃 ) |
4 | bren | ⊢ ( 𝐺 ≈ 𝑃 ↔ ∃ 𝑓 𝑓 : 𝐺 –1-1-onto→ 𝑃 ) | |
5 | 3 4 | sylibr | ⊢ ( 𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑃 ) |