Metamath Proof Explorer


Theorem uspgrspren

Description: The set G of the "simple pseudographs" with a fixed set of vertices V and the class P of subsets of the set of pairs over the fixed set V are equinumerous. (Contributed by AV, 27-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
Assertion uspgrspren ( 𝑉𝑊𝐺𝑃 )

Proof

Step Hyp Ref Expression
1 uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
3 1 2 uspgrbispr ( 𝑉𝑊 → ∃ 𝑓 𝑓 : 𝐺1-1-onto𝑃 )
4 bren ( 𝐺𝑃 ↔ ∃ 𝑓 𝑓 : 𝐺1-1-onto𝑃 )
5 3 4 sylibr ( 𝑉𝑊𝐺𝑃 )