Description: The mapping F is a bijection between the "simple pseudographs" with a fixed set of vertices V and the subsets of the set of pairs over the set V . See also the comments on uspgrbisymrel . (Contributed by AV, 25-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uspgrsprf.p | ⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) | |
uspgrsprf.g | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } | ||
uspgrsprf.f | ⊢ 𝐹 = ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) | ||
Assertion | uspgrsprf1o | ⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝐺 –1-1-onto→ 𝑃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrsprf.p | ⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) | |
2 | uspgrsprf.g | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } | |
3 | uspgrsprf.f | ⊢ 𝐹 = ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) | |
4 | 1 2 3 | uspgrsprf1 | ⊢ 𝐹 : 𝐺 –1-1→ 𝑃 |
5 | 4 | a1i | ⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝐺 –1-1→ 𝑃 ) |
6 | 1 2 3 | uspgrsprfo | ⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝐺 –onto→ 𝑃 ) |
7 | df-f1o | ⊢ ( 𝐹 : 𝐺 –1-1-onto→ 𝑃 ↔ ( 𝐹 : 𝐺 –1-1→ 𝑃 ∧ 𝐹 : 𝐺 –onto→ 𝑃 ) ) | |
8 | 5 6 7 | sylanbrc | ⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝐺 –1-1-onto→ 𝑃 ) |