Metamath Proof Explorer


Theorem uspgrsprf1o

Description: The mapping F is a bijection between the "simple pseudographs" with a fixed set of vertices V and the subsets of the set of pairs over the set V . See also the comments on uspgrbisymrel . (Contributed by AV, 25-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
uspgrsprf.f 𝐹 = ( 𝑔𝐺 ↦ ( 2nd𝑔 ) )
Assertion uspgrsprf1o ( 𝑉𝑊𝐹 : 𝐺1-1-onto𝑃 )

Proof

Step Hyp Ref Expression
1 uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
3 uspgrsprf.f 𝐹 = ( 𝑔𝐺 ↦ ( 2nd𝑔 ) )
4 1 2 3 uspgrsprf1 𝐹 : 𝐺1-1𝑃
5 4 a1i ( 𝑉𝑊𝐹 : 𝐺1-1𝑃 )
6 1 2 3 uspgrsprfo ( 𝑉𝑊𝐹 : 𝐺onto𝑃 )
7 df-f1o ( 𝐹 : 𝐺1-1-onto𝑃 ↔ ( 𝐹 : 𝐺1-1𝑃𝐹 : 𝐺onto𝑃 ) )
8 5 6 7 sylanbrc ( 𝑉𝑊𝐹 : 𝐺1-1-onto𝑃 )