Metamath Proof Explorer


Theorem uspgrsprf1o

Description: The mapping F is a bijection between the "simple pseudographs" with a fixed set of vertices V and the subsets of the set of pairs over the set V . See also the comments on uspgrbisymrel . (Contributed by AV, 25-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P=𝒫PairsV
uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
uspgrsprf.f F=gG2ndg
Assertion uspgrsprf1o VWF:G1-1 ontoP

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P=𝒫PairsV
2 uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
3 uspgrsprf.f F=gG2ndg
4 1 2 3 uspgrsprf1 F:G1-1P
5 4 a1i VWF:G1-1P
6 1 2 3 uspgrsprfo VWF:GontoP
7 df-f1o F:G1-1 ontoPF:G1-1PF:GontoP
8 5 6 7 sylanbrc VWF:G1-1 ontoP