Metamath Proof Explorer


Theorem uspgrsprf1o

Description: The mapping F is a bijection between the "simple pseudographs" with a fixed set of vertices V and the subsets of the set of pairs over the set V . See also the comments on uspgrbisymrel . (Contributed by AV, 25-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P = 𝒫 Pairs V
uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
uspgrsprf.f F = g G 2 nd g
Assertion uspgrsprf1o V W F : G 1-1 onto P

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P = 𝒫 Pairs V
2 uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
3 uspgrsprf.f F = g G 2 nd g
4 1 2 3 uspgrsprf1 F : G 1-1 P
5 4 a1i V W F : G 1-1 P
6 1 2 3 uspgrsprfo V W F : G onto P
7 df-f1o F : G 1-1 onto P F : G 1-1 P F : G onto P
8 5 6 7 sylanbrc V W F : G 1-1 onto P