Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
|
2 |
|
uspgrsprf.g |
|
3 |
|
uspgrsprf.f |
|
4 |
1 2 3
|
uspgrsprf |
|
5 |
1 2 3
|
uspgrsprfv |
|
6 |
1 2 3
|
uspgrsprfv |
|
7 |
5 6
|
eqeqan12d |
|
8 |
2
|
eleq2i |
|
9 |
|
elopab |
|
10 |
|
opeq12 |
|
11 |
10
|
eqeq2d |
|
12 |
|
eqeq1 |
|
13 |
12
|
adantr |
|
14 |
|
eqeq2 |
|
15 |
|
eqeq2 |
|
16 |
14 15
|
bi2anan9 |
|
17 |
16
|
rexbidv |
|
18 |
13 17
|
anbi12d |
|
19 |
11 18
|
anbi12d |
|
20 |
19
|
cbvex2vw |
|
21 |
8 9 20
|
3bitri |
|
22 |
2
|
eleq2i |
|
23 |
|
elopab |
|
24 |
22 23
|
bitri |
|
25 |
|
eqeq2 |
|
26 |
|
opeq12 |
|
27 |
26
|
ex |
|
28 |
27
|
equcoms |
|
29 |
25 28
|
syl6bir |
|
30 |
29
|
ad2antrl |
|
31 |
30
|
com12 |
|
32 |
31
|
ad2antrl |
|
33 |
32
|
imp |
|
34 |
|
vex |
|
35 |
|
vex |
|
36 |
34 35
|
op2ndd |
|
37 |
36
|
ad2antrl |
|
38 |
|
vex |
|
39 |
|
vex |
|
40 |
38 39
|
op2ndd |
|
41 |
40
|
adantr |
|
42 |
41
|
adantr |
|
43 |
37 42
|
eqeq12d |
|
44 |
|
eqeq12 |
|
45 |
44
|
ex |
|
46 |
45
|
adantr |
|
47 |
46
|
com12 |
|
48 |
47
|
adantr |
|
49 |
48
|
imp |
|
50 |
33 43 49
|
3imtr4d |
|
51 |
50
|
ex |
|
52 |
51
|
exlimivv |
|
53 |
52
|
com12 |
|
54 |
53
|
exlimivv |
|
55 |
54
|
imp |
|
56 |
21 24 55
|
syl2anb |
|
57 |
7 56
|
sylbid |
|
58 |
57
|
rgen2 |
|
59 |
|
dff13 |
|
60 |
4 58 59
|
mpbir2an |
|