| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrsprf.p |
|
| 2 |
|
uspgrsprf.g |
|
| 3 |
|
uspgrsprf.f |
|
| 4 |
1 2 3
|
uspgrsprf |
|
| 5 |
1 2 3
|
uspgrsprfv |
|
| 6 |
1 2 3
|
uspgrsprfv |
|
| 7 |
5 6
|
eqeqan12d |
|
| 8 |
2
|
eleq2i |
|
| 9 |
|
elopab |
|
| 10 |
|
opeq12 |
|
| 11 |
10
|
eqeq2d |
|
| 12 |
|
eqeq1 |
|
| 13 |
12
|
adantr |
|
| 14 |
|
eqeq2 |
|
| 15 |
|
eqeq2 |
|
| 16 |
14 15
|
bi2anan9 |
|
| 17 |
16
|
rexbidv |
|
| 18 |
13 17
|
anbi12d |
|
| 19 |
11 18
|
anbi12d |
|
| 20 |
19
|
cbvex2vw |
|
| 21 |
8 9 20
|
3bitri |
|
| 22 |
2
|
eleq2i |
|
| 23 |
|
elopab |
|
| 24 |
22 23
|
bitri |
|
| 25 |
|
eqeq2 |
|
| 26 |
|
opeq12 |
|
| 27 |
26
|
ex |
|
| 28 |
27
|
equcoms |
|
| 29 |
25 28
|
biimtrrdi |
|
| 30 |
29
|
ad2antrl |
|
| 31 |
30
|
com12 |
|
| 32 |
31
|
ad2antrl |
|
| 33 |
32
|
imp |
|
| 34 |
|
vex |
|
| 35 |
|
vex |
|
| 36 |
34 35
|
op2ndd |
|
| 37 |
36
|
ad2antrl |
|
| 38 |
|
vex |
|
| 39 |
|
vex |
|
| 40 |
38 39
|
op2ndd |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
adantr |
|
| 43 |
37 42
|
eqeq12d |
|
| 44 |
|
eqeq12 |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
com12 |
|
| 48 |
47
|
adantr |
|
| 49 |
48
|
imp |
|
| 50 |
33 43 49
|
3imtr4d |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
exlimivv |
|
| 53 |
52
|
com12 |
|
| 54 |
53
|
exlimivv |
|
| 55 |
54
|
imp |
|
| 56 |
21 24 55
|
syl2anb |
|
| 57 |
7 56
|
sylbid |
|
| 58 |
57
|
rgen2 |
|
| 59 |
|
dff13 |
|
| 60 |
4 58 59
|
mpbir2an |
|