Description: The mapping F is a one-to-one function from the "simple pseudographs" with a fixed set of vertices V into the subsets of the set of pairs over the set V . (Contributed by AV, 25-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uspgrsprf.p | |
|
uspgrsprf.g | |
||
uspgrsprf.f | |
||
Assertion | uspgrsprf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrsprf.p | |
|
2 | uspgrsprf.g | |
|
3 | uspgrsprf.f | |
|
4 | 1 2 3 | uspgrsprf | |
5 | 1 2 3 | uspgrsprfv | |
6 | 1 2 3 | uspgrsprfv | |
7 | 5 6 | eqeqan12d | |
8 | 2 | eleq2i | |
9 | elopab | |
|
10 | opeq12 | |
|
11 | 10 | eqeq2d | |
12 | eqeq1 | |
|
13 | 12 | adantr | |
14 | eqeq2 | |
|
15 | eqeq2 | |
|
16 | 14 15 | bi2anan9 | |
17 | 16 | rexbidv | |
18 | 13 17 | anbi12d | |
19 | 11 18 | anbi12d | |
20 | 19 | cbvex2vw | |
21 | 8 9 20 | 3bitri | |
22 | 2 | eleq2i | |
23 | elopab | |
|
24 | 22 23 | bitri | |
25 | eqeq2 | |
|
26 | opeq12 | |
|
27 | 26 | ex | |
28 | 27 | equcoms | |
29 | 25 28 | syl6bir | |
30 | 29 | ad2antrl | |
31 | 30 | com12 | |
32 | 31 | ad2antrl | |
33 | 32 | imp | |
34 | vex | |
|
35 | vex | |
|
36 | 34 35 | op2ndd | |
37 | 36 | ad2antrl | |
38 | vex | |
|
39 | vex | |
|
40 | 38 39 | op2ndd | |
41 | 40 | adantr | |
42 | 41 | adantr | |
43 | 37 42 | eqeq12d | |
44 | eqeq12 | |
|
45 | 44 | ex | |
46 | 45 | adantr | |
47 | 46 | com12 | |
48 | 47 | adantr | |
49 | 48 | imp | |
50 | 33 43 49 | 3imtr4d | |
51 | 50 | ex | |
52 | 51 | exlimivv | |
53 | 52 | com12 | |
54 | 53 | exlimivv | |
55 | 54 | imp | |
56 | 21 24 55 | syl2anb | |
57 | 7 56 | sylbid | |
58 | 57 | rgen2 | |
59 | dff13 | |
|
60 | 4 58 59 | mpbir2an | |