Metamath Proof Explorer


Theorem uspgrsprf1

Description: The mapping F is a one-to-one function from the "simple pseudographs" with a fixed set of vertices V into the subsets of the set of pairs over the set V . (Contributed by AV, 25-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P=𝒫PairsV
uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
uspgrsprf.f F=gG2ndg
Assertion uspgrsprf1 F:G1-1P

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P=𝒫PairsV
2 uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
3 uspgrsprf.f F=gG2ndg
4 1 2 3 uspgrsprf F:GP
5 1 2 3 uspgrsprfv aGFa=2nda
6 1 2 3 uspgrsprfv bGFb=2ndb
7 5 6 eqeqan12d aGbGFa=Fb2nda=2ndb
8 2 eleq2i aGave|v=VqUSHGraphVtxq=vEdgq=e
9 elopab ave|v=VqUSHGraphVtxq=vEdgq=evea=vev=VqUSHGraphVtxq=vEdgq=e
10 opeq12 v=we=fve=wf
11 10 eqeq2d v=we=fa=vea=wf
12 eqeq1 v=wv=Vw=V
13 12 adantr v=we=fv=Vw=V
14 eqeq2 v=wVtxq=vVtxq=w
15 eqeq2 e=fEdgq=eEdgq=f
16 14 15 bi2anan9 v=we=fVtxq=vEdgq=eVtxq=wEdgq=f
17 16 rexbidv v=we=fqUSHGraphVtxq=vEdgq=eqUSHGraphVtxq=wEdgq=f
18 13 17 anbi12d v=we=fv=VqUSHGraphVtxq=vEdgq=ew=VqUSHGraphVtxq=wEdgq=f
19 11 18 anbi12d v=we=fa=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=f
20 19 cbvex2vw vea=vev=VqUSHGraphVtxq=vEdgq=ewfa=wfw=VqUSHGraphVtxq=wEdgq=f
21 8 9 20 3bitri aGwfa=wfw=VqUSHGraphVtxq=wEdgq=f
22 2 eleq2i bGbve|v=VqUSHGraphVtxq=vEdgq=e
23 elopab bve|v=VqUSHGraphVtxq=vEdgq=eveb=vev=VqUSHGraphVtxq=vEdgq=e
24 22 23 bitri bGveb=vev=VqUSHGraphVtxq=vEdgq=e
25 eqeq2 w=Vv=wv=V
26 opeq12 w=vf=ewf=ve
27 26 ex w=vf=ewf=ve
28 27 equcoms v=wf=ewf=ve
29 25 28 syl6bir w=Vv=Vf=ewf=ve
30 29 ad2antrl a=wfw=VqUSHGraphVtxq=wEdgq=fv=Vf=ewf=ve
31 30 com12 v=Va=wfw=VqUSHGraphVtxq=wEdgq=ff=ewf=ve
32 31 ad2antrl b=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=ff=ewf=ve
33 32 imp b=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=ff=ewf=ve
34 vex wV
35 vex fV
36 34 35 op2ndd a=wf2nda=f
37 36 ad2antrl b=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=f2nda=f
38 vex vV
39 vex eV
40 38 39 op2ndd b=ve2ndb=e
41 40 adantr b=vev=VqUSHGraphVtxq=vEdgq=e2ndb=e
42 41 adantr b=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=f2ndb=e
43 37 42 eqeq12d b=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=f2nda=2ndbf=e
44 eqeq12 a=wfb=vea=bwf=ve
45 44 ex a=wfb=vea=bwf=ve
46 45 adantr a=wfw=VqUSHGraphVtxq=wEdgq=fb=vea=bwf=ve
47 46 com12 b=vea=wfw=VqUSHGraphVtxq=wEdgq=fa=bwf=ve
48 47 adantr b=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=fa=bwf=ve
49 48 imp b=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=fa=bwf=ve
50 33 43 49 3imtr4d b=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=f2nda=2ndba=b
51 50 ex b=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=f2nda=2ndba=b
52 51 exlimivv veb=vev=VqUSHGraphVtxq=vEdgq=ea=wfw=VqUSHGraphVtxq=wEdgq=f2nda=2ndba=b
53 52 com12 a=wfw=VqUSHGraphVtxq=wEdgq=fveb=vev=VqUSHGraphVtxq=vEdgq=e2nda=2ndba=b
54 53 exlimivv wfa=wfw=VqUSHGraphVtxq=wEdgq=fveb=vev=VqUSHGraphVtxq=vEdgq=e2nda=2ndba=b
55 54 imp wfa=wfw=VqUSHGraphVtxq=wEdgq=fveb=vev=VqUSHGraphVtxq=vEdgq=e2nda=2ndba=b
56 21 24 55 syl2anb aGbG2nda=2ndba=b
57 7 56 sylbid aGbGFa=Fba=b
58 57 rgen2 aGbGFa=Fba=b
59 dff13 F:G1-1PF:GPaGbGFa=Fba=b
60 4 58 59 mpbir2an F:G1-1P