Metamath Proof Explorer


Theorem uspgrsprf1

Description: The mapping F is a one-to-one function from the "simple pseudographs" with a fixed set of vertices V into the subsets of the set of pairs over the set V . (Contributed by AV, 25-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P = 𝒫 Pairs V
uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
uspgrsprf.f F = g G 2 nd g
Assertion uspgrsprf1 F : G 1-1 P

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P = 𝒫 Pairs V
2 uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
3 uspgrsprf.f F = g G 2 nd g
4 1 2 3 uspgrsprf F : G P
5 1 2 3 uspgrsprfv a G F a = 2 nd a
6 1 2 3 uspgrsprfv b G F b = 2 nd b
7 5 6 eqeqan12d a G b G F a = F b 2 nd a = 2 nd b
8 2 eleq2i a G a v e | v = V q USHGraph Vtx q = v Edg q = e
9 elopab a v e | v = V q USHGraph Vtx q = v Edg q = e v e a = v e v = V q USHGraph Vtx q = v Edg q = e
10 opeq12 v = w e = f v e = w f
11 10 eqeq2d v = w e = f a = v e a = w f
12 eqeq1 v = w v = V w = V
13 12 adantr v = w e = f v = V w = V
14 eqeq2 v = w Vtx q = v Vtx q = w
15 eqeq2 e = f Edg q = e Edg q = f
16 14 15 bi2anan9 v = w e = f Vtx q = v Edg q = e Vtx q = w Edg q = f
17 16 rexbidv v = w e = f q USHGraph Vtx q = v Edg q = e q USHGraph Vtx q = w Edg q = f
18 13 17 anbi12d v = w e = f v = V q USHGraph Vtx q = v Edg q = e w = V q USHGraph Vtx q = w Edg q = f
19 11 18 anbi12d v = w e = f a = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f
20 19 cbvex2vw v e a = v e v = V q USHGraph Vtx q = v Edg q = e w f a = w f w = V q USHGraph Vtx q = w Edg q = f
21 8 9 20 3bitri a G w f a = w f w = V q USHGraph Vtx q = w Edg q = f
22 2 eleq2i b G b v e | v = V q USHGraph Vtx q = v Edg q = e
23 elopab b v e | v = V q USHGraph Vtx q = v Edg q = e v e b = v e v = V q USHGraph Vtx q = v Edg q = e
24 22 23 bitri b G v e b = v e v = V q USHGraph Vtx q = v Edg q = e
25 eqeq2 w = V v = w v = V
26 opeq12 w = v f = e w f = v e
27 26 ex w = v f = e w f = v e
28 27 equcoms v = w f = e w f = v e
29 25 28 syl6bir w = V v = V f = e w f = v e
30 29 ad2antrl a = w f w = V q USHGraph Vtx q = w Edg q = f v = V f = e w f = v e
31 30 com12 v = V a = w f w = V q USHGraph Vtx q = w Edg q = f f = e w f = v e
32 31 ad2antrl b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f f = e w f = v e
33 32 imp b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f f = e w f = v e
34 vex w V
35 vex f V
36 34 35 op2ndd a = w f 2 nd a = f
37 36 ad2antrl b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f 2 nd a = f
38 vex v V
39 vex e V
40 38 39 op2ndd b = v e 2 nd b = e
41 40 adantr b = v e v = V q USHGraph Vtx q = v Edg q = e 2 nd b = e
42 41 adantr b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f 2 nd b = e
43 37 42 eqeq12d b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f 2 nd a = 2 nd b f = e
44 eqeq12 a = w f b = v e a = b w f = v e
45 44 ex a = w f b = v e a = b w f = v e
46 45 adantr a = w f w = V q USHGraph Vtx q = w Edg q = f b = v e a = b w f = v e
47 46 com12 b = v e a = w f w = V q USHGraph Vtx q = w Edg q = f a = b w f = v e
48 47 adantr b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f a = b w f = v e
49 48 imp b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f a = b w f = v e
50 33 43 49 3imtr4d b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f 2 nd a = 2 nd b a = b
51 50 ex b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f 2 nd a = 2 nd b a = b
52 51 exlimivv v e b = v e v = V q USHGraph Vtx q = v Edg q = e a = w f w = V q USHGraph Vtx q = w Edg q = f 2 nd a = 2 nd b a = b
53 52 com12 a = w f w = V q USHGraph Vtx q = w Edg q = f v e b = v e v = V q USHGraph Vtx q = v Edg q = e 2 nd a = 2 nd b a = b
54 53 exlimivv w f a = w f w = V q USHGraph Vtx q = w Edg q = f v e b = v e v = V q USHGraph Vtx q = v Edg q = e 2 nd a = 2 nd b a = b
55 54 imp w f a = w f w = V q USHGraph Vtx q = w Edg q = f v e b = v e v = V q USHGraph Vtx q = v Edg q = e 2 nd a = 2 nd b a = b
56 21 24 55 syl2anb a G b G 2 nd a = 2 nd b a = b
57 7 56 sylbid a G b G F a = F b a = b
58 57 rgen2 a G b G F a = F b a = b
59 dff13 F : G 1-1 P F : G P a G b G F a = F b a = b
60 4 58 59 mpbir2an F : G 1-1 P