Metamath Proof Explorer


Theorem uspgrsprf

Description: The mapping F is a function from the "simple pseudographs" with a fixed set of vertices V into the subsets of the set of pairs over the set V . (Contributed by AV, 24-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P = 𝒫 Pairs V
uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
uspgrsprf.f F = g G 2 nd g
Assertion uspgrsprf F : G P

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P = 𝒫 Pairs V
2 uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
3 uspgrsprf.f F = g G 2 nd g
4 2 eleq2i g G g v e | v = V q USHGraph Vtx q = v Edg q = e
5 elopab g v e | v = V q USHGraph Vtx q = v Edg q = e v e g = v e v = V q USHGraph Vtx q = v Edg q = e
6 4 5 bitri g G v e g = v e v = V q USHGraph Vtx q = v Edg q = e
7 uspgrupgr q USHGraph q UPGraph
8 upgredgssspr q UPGraph Edg q Pairs Vtx q
9 7 8 syl q USHGraph Edg q Pairs Vtx q
10 9 adantr q USHGraph Vtx q = v Edg q = e Edg q Pairs Vtx q
11 simpr Vtx q = v Edg q = e Edg q = e
12 fveq2 Vtx q = v Pairs Vtx q = Pairs v
13 12 adantr Vtx q = v Edg q = e Pairs Vtx q = Pairs v
14 11 13 sseq12d Vtx q = v Edg q = e Edg q Pairs Vtx q e Pairs v
15 14 adantl q USHGraph Vtx q = v Edg q = e Edg q Pairs Vtx q e Pairs v
16 10 15 mpbid q USHGraph Vtx q = v Edg q = e e Pairs v
17 16 rexlimiva q USHGraph Vtx q = v Edg q = e e Pairs v
18 17 adantl v = V q USHGraph Vtx q = v Edg q = e e Pairs v
19 fveq2 v = V Pairs v = Pairs V
20 19 sseq2d v = V e Pairs v e Pairs V
21 20 adantr v = V q USHGraph Vtx q = v Edg q = e e Pairs v e Pairs V
22 18 21 mpbid v = V q USHGraph Vtx q = v Edg q = e e Pairs V
23 22 adantl g = v e v = V q USHGraph Vtx q = v Edg q = e e Pairs V
24 vex v V
25 vex e V
26 24 25 op2ndd g = v e 2 nd g = e
27 26 sseq1d g = v e 2 nd g Pairs V e Pairs V
28 27 adantr g = v e v = V q USHGraph Vtx q = v Edg q = e 2 nd g Pairs V e Pairs V
29 23 28 mpbird g = v e v = V q USHGraph Vtx q = v Edg q = e 2 nd g Pairs V
30 1 eleq2i 2 nd g P 2 nd g 𝒫 Pairs V
31 fvex 2 nd g V
32 31 elpw 2 nd g 𝒫 Pairs V 2 nd g Pairs V
33 30 32 bitri 2 nd g P 2 nd g Pairs V
34 29 33 sylibr g = v e v = V q USHGraph Vtx q = v Edg q = e 2 nd g P
35 34 exlimivv v e g = v e v = V q USHGraph Vtx q = v Edg q = e 2 nd g P
36 6 35 sylbi g G 2 nd g P
37 3 36 fmpti F : G P