Metamath Proof Explorer


Theorem uspgrsprf

Description: The mapping F is a function from the "simple pseudographs" with a fixed set of vertices V into the subsets of the set of pairs over the set V . (Contributed by AV, 24-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
uspgrsprf.f 𝐹 = ( 𝑔𝐺 ↦ ( 2nd𝑔 ) )
Assertion uspgrsprf 𝐹 : 𝐺𝑃

Proof

Step Hyp Ref Expression
1 uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
3 uspgrsprf.f 𝐹 = ( 𝑔𝐺 ↦ ( 2nd𝑔 ) )
4 2 eleq2i ( 𝑔𝐺𝑔 ∈ { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } )
5 elopab ( 𝑔 ∈ { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ↔ ∃ 𝑣𝑒 ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) )
6 4 5 bitri ( 𝑔𝐺 ↔ ∃ 𝑣𝑒 ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) )
7 uspgrupgr ( 𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph )
8 upgredgssspr ( 𝑞 ∈ UPGraph → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) )
9 7 8 syl ( 𝑞 ∈ USPGraph → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) )
10 9 adantr ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) )
11 simpr ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( Edg ‘ 𝑞 ) = 𝑒 )
12 fveq2 ( ( Vtx ‘ 𝑞 ) = 𝑣 → ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) = ( Pairs ‘ 𝑣 ) )
13 12 adantr ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) = ( Pairs ‘ 𝑣 ) )
14 11 13 sseq12d ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ) )
15 14 adantl ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → ( ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ) )
16 10 15 mpbid ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → 𝑒 ⊆ ( Pairs ‘ 𝑣 ) )
17 16 rexlimiva ( ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → 𝑒 ⊆ ( Pairs ‘ 𝑣 ) )
18 17 adantl ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → 𝑒 ⊆ ( Pairs ‘ 𝑣 ) )
19 fveq2 ( 𝑣 = 𝑉 → ( Pairs ‘ 𝑣 ) = ( Pairs ‘ 𝑉 ) )
20 19 sseq2d ( 𝑣 = 𝑉 → ( 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) )
21 20 adantr ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → ( 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) )
22 18 21 mpbid ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → 𝑒 ⊆ ( Pairs ‘ 𝑉 ) )
23 22 adantl ( ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → 𝑒 ⊆ ( Pairs ‘ 𝑉 ) )
24 vex 𝑣 ∈ V
25 vex 𝑒 ∈ V
26 24 25 op2ndd ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ → ( 2nd𝑔 ) = 𝑒 )
27 26 sseq1d ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ → ( ( 2nd𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) )
28 27 adantr ( ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → ( ( 2nd𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) )
29 23 28 mpbird ( ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → ( 2nd𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) )
30 1 eleq2i ( ( 2nd𝑔 ) ∈ 𝑃 ↔ ( 2nd𝑔 ) ∈ 𝒫 ( Pairs ‘ 𝑉 ) )
31 fvex ( 2nd𝑔 ) ∈ V
32 31 elpw ( ( 2nd𝑔 ) ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↔ ( 2nd𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) )
33 30 32 bitri ( ( 2nd𝑔 ) ∈ 𝑃 ↔ ( 2nd𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) )
34 29 33 sylibr ( ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → ( 2nd𝑔 ) ∈ 𝑃 )
35 34 exlimivv ( ∃ 𝑣𝑒 ( 𝑔 = ⟨ 𝑣 , 𝑒 ⟩ ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → ( 2nd𝑔 ) ∈ 𝑃 )
36 6 35 sylbi ( 𝑔𝐺 → ( 2nd𝑔 ) ∈ 𝑃 )
37 3 36 fmpti 𝐹 : 𝐺𝑃