Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) |
2 |
|
uspgrsprf.g |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } |
3 |
|
uspgrsprf.f |
⊢ 𝐹 = ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) |
4 |
2
|
eleq2i |
⊢ ( 𝑔 ∈ 𝐺 ↔ 𝑔 ∈ { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ) |
5 |
|
elopab |
⊢ ( 𝑔 ∈ { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ↔ ∃ 𝑣 ∃ 𝑒 ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) ) |
6 |
4 5
|
bitri |
⊢ ( 𝑔 ∈ 𝐺 ↔ ∃ 𝑣 ∃ 𝑒 ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) ) |
7 |
|
uspgrupgr |
⊢ ( 𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph ) |
8 |
|
upgredgssspr |
⊢ ( 𝑞 ∈ UPGraph → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑞 ∈ USPGraph → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ) |
11 |
|
simpr |
⊢ ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( Edg ‘ 𝑞 ) = 𝑒 ) |
12 |
|
fveq2 |
⊢ ( ( Vtx ‘ 𝑞 ) = 𝑣 → ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) = ( Pairs ‘ 𝑣 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) = ( Pairs ‘ 𝑣 ) ) |
14 |
11 13
|
sseq12d |
⊢ ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → ( ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ) ) |
16 |
10 15
|
mpbid |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ) |
17 |
16
|
rexlimiva |
⊢ ( ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( Pairs ‘ 𝑣 ) = ( Pairs ‘ 𝑉 ) ) |
20 |
19
|
sseq2d |
⊢ ( 𝑣 = 𝑉 → ( 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → ( 𝑒 ⊆ ( Pairs ‘ 𝑣 ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) ) |
22 |
18 21
|
mpbid |
⊢ ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) |
24 |
|
vex |
⊢ 𝑣 ∈ V |
25 |
|
vex |
⊢ 𝑒 ∈ V |
26 |
24 25
|
op2ndd |
⊢ ( 𝑔 = 〈 𝑣 , 𝑒 〉 → ( 2nd ‘ 𝑔 ) = 𝑒 ) |
27 |
26
|
sseq1d |
⊢ ( 𝑔 = 〈 𝑣 , 𝑒 〉 → ( ( 2nd ‘ 𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → ( ( 2nd ‘ 𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) ↔ 𝑒 ⊆ ( Pairs ‘ 𝑉 ) ) ) |
29 |
23 28
|
mpbird |
⊢ ( ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → ( 2nd ‘ 𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) ) |
30 |
1
|
eleq2i |
⊢ ( ( 2nd ‘ 𝑔 ) ∈ 𝑃 ↔ ( 2nd ‘ 𝑔 ) ∈ 𝒫 ( Pairs ‘ 𝑉 ) ) |
31 |
|
fvex |
⊢ ( 2nd ‘ 𝑔 ) ∈ V |
32 |
31
|
elpw |
⊢ ( ( 2nd ‘ 𝑔 ) ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↔ ( 2nd ‘ 𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) ) |
33 |
30 32
|
bitri |
⊢ ( ( 2nd ‘ 𝑔 ) ∈ 𝑃 ↔ ( 2nd ‘ 𝑔 ) ⊆ ( Pairs ‘ 𝑉 ) ) |
34 |
29 33
|
sylibr |
⊢ ( ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → ( 2nd ‘ 𝑔 ) ∈ 𝑃 ) |
35 |
34
|
exlimivv |
⊢ ( ∃ 𝑣 ∃ 𝑒 ( 𝑔 = 〈 𝑣 , 𝑒 〉 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → ( 2nd ‘ 𝑔 ) ∈ 𝑃 ) |
36 |
6 35
|
sylbi |
⊢ ( 𝑔 ∈ 𝐺 → ( 2nd ‘ 𝑔 ) ∈ 𝑃 ) |
37 |
3 36
|
fmpti |
⊢ 𝐹 : 𝐺 ⟶ 𝑃 |