Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
|- P = ~P ( Pairs ` V ) |
2 |
|
uspgrsprf.g |
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
3 |
|
uspgrsprf.f |
|- F = ( g e. G |-> ( 2nd ` g ) ) |
4 |
2
|
eleq2i |
|- ( g e. G <-> g e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } ) |
5 |
|
elopab |
|- ( g e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } <-> E. v E. e ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) ) |
6 |
4 5
|
bitri |
|- ( g e. G <-> E. v E. e ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) ) |
7 |
|
uspgrupgr |
|- ( q e. USPGraph -> q e. UPGraph ) |
8 |
|
upgredgssspr |
|- ( q e. UPGraph -> ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) ) |
9 |
7 8
|
syl |
|- ( q e. USPGraph -> ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) ) |
10 |
9
|
adantr |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) ) |
11 |
|
simpr |
|- ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> ( Edg ` q ) = e ) |
12 |
|
fveq2 |
|- ( ( Vtx ` q ) = v -> ( Pairs ` ( Vtx ` q ) ) = ( Pairs ` v ) ) |
13 |
12
|
adantr |
|- ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> ( Pairs ` ( Vtx ` q ) ) = ( Pairs ` v ) ) |
14 |
11 13
|
sseq12d |
|- ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> ( ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) <-> e C_ ( Pairs ` v ) ) ) |
15 |
14
|
adantl |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> ( ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) <-> e C_ ( Pairs ` v ) ) ) |
16 |
10 15
|
mpbid |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> e C_ ( Pairs ` v ) ) |
17 |
16
|
rexlimiva |
|- ( E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> e C_ ( Pairs ` v ) ) |
18 |
17
|
adantl |
|- ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> e C_ ( Pairs ` v ) ) |
19 |
|
fveq2 |
|- ( v = V -> ( Pairs ` v ) = ( Pairs ` V ) ) |
20 |
19
|
sseq2d |
|- ( v = V -> ( e C_ ( Pairs ` v ) <-> e C_ ( Pairs ` V ) ) ) |
21 |
20
|
adantr |
|- ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> ( e C_ ( Pairs ` v ) <-> e C_ ( Pairs ` V ) ) ) |
22 |
18 21
|
mpbid |
|- ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> e C_ ( Pairs ` V ) ) |
23 |
22
|
adantl |
|- ( ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> e C_ ( Pairs ` V ) ) |
24 |
|
vex |
|- v e. _V |
25 |
|
vex |
|- e e. _V |
26 |
24 25
|
op2ndd |
|- ( g = <. v , e >. -> ( 2nd ` g ) = e ) |
27 |
26
|
sseq1d |
|- ( g = <. v , e >. -> ( ( 2nd ` g ) C_ ( Pairs ` V ) <-> e C_ ( Pairs ` V ) ) ) |
28 |
27
|
adantr |
|- ( ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( ( 2nd ` g ) C_ ( Pairs ` V ) <-> e C_ ( Pairs ` V ) ) ) |
29 |
23 28
|
mpbird |
|- ( ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( 2nd ` g ) C_ ( Pairs ` V ) ) |
30 |
1
|
eleq2i |
|- ( ( 2nd ` g ) e. P <-> ( 2nd ` g ) e. ~P ( Pairs ` V ) ) |
31 |
|
fvex |
|- ( 2nd ` g ) e. _V |
32 |
31
|
elpw |
|- ( ( 2nd ` g ) e. ~P ( Pairs ` V ) <-> ( 2nd ` g ) C_ ( Pairs ` V ) ) |
33 |
30 32
|
bitri |
|- ( ( 2nd ` g ) e. P <-> ( 2nd ` g ) C_ ( Pairs ` V ) ) |
34 |
29 33
|
sylibr |
|- ( ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( 2nd ` g ) e. P ) |
35 |
34
|
exlimivv |
|- ( E. v E. e ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( 2nd ` g ) e. P ) |
36 |
6 35
|
sylbi |
|- ( g e. G -> ( 2nd ` g ) e. P ) |
37 |
3 36
|
fmpti |
|- F : G --> P |