| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrsprf.p |
|- P = ~P ( Pairs ` V ) |
| 2 |
|
uspgrsprf.g |
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
| 3 |
|
uspgrsprf.f |
|- F = ( g e. G |-> ( 2nd ` g ) ) |
| 4 |
2
|
eleq2i |
|- ( g e. G <-> g e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } ) |
| 5 |
|
elopab |
|- ( g e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } <-> E. v E. e ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) ) |
| 6 |
4 5
|
bitri |
|- ( g e. G <-> E. v E. e ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) ) |
| 7 |
|
uspgrupgr |
|- ( q e. USPGraph -> q e. UPGraph ) |
| 8 |
|
upgredgssspr |
|- ( q e. UPGraph -> ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) ) |
| 9 |
7 8
|
syl |
|- ( q e. USPGraph -> ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) ) |
| 10 |
9
|
adantr |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) ) |
| 11 |
|
simpr |
|- ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> ( Edg ` q ) = e ) |
| 12 |
|
fveq2 |
|- ( ( Vtx ` q ) = v -> ( Pairs ` ( Vtx ` q ) ) = ( Pairs ` v ) ) |
| 13 |
12
|
adantr |
|- ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> ( Pairs ` ( Vtx ` q ) ) = ( Pairs ` v ) ) |
| 14 |
11 13
|
sseq12d |
|- ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> ( ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) <-> e C_ ( Pairs ` v ) ) ) |
| 15 |
14
|
adantl |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> ( ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) <-> e C_ ( Pairs ` v ) ) ) |
| 16 |
10 15
|
mpbid |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> e C_ ( Pairs ` v ) ) |
| 17 |
16
|
rexlimiva |
|- ( E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> e C_ ( Pairs ` v ) ) |
| 18 |
17
|
adantl |
|- ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> e C_ ( Pairs ` v ) ) |
| 19 |
|
fveq2 |
|- ( v = V -> ( Pairs ` v ) = ( Pairs ` V ) ) |
| 20 |
19
|
sseq2d |
|- ( v = V -> ( e C_ ( Pairs ` v ) <-> e C_ ( Pairs ` V ) ) ) |
| 21 |
20
|
adantr |
|- ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> ( e C_ ( Pairs ` v ) <-> e C_ ( Pairs ` V ) ) ) |
| 22 |
18 21
|
mpbid |
|- ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> e C_ ( Pairs ` V ) ) |
| 23 |
22
|
adantl |
|- ( ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> e C_ ( Pairs ` V ) ) |
| 24 |
|
vex |
|- v e. _V |
| 25 |
|
vex |
|- e e. _V |
| 26 |
24 25
|
op2ndd |
|- ( g = <. v , e >. -> ( 2nd ` g ) = e ) |
| 27 |
26
|
sseq1d |
|- ( g = <. v , e >. -> ( ( 2nd ` g ) C_ ( Pairs ` V ) <-> e C_ ( Pairs ` V ) ) ) |
| 28 |
27
|
adantr |
|- ( ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( ( 2nd ` g ) C_ ( Pairs ` V ) <-> e C_ ( Pairs ` V ) ) ) |
| 29 |
23 28
|
mpbird |
|- ( ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( 2nd ` g ) C_ ( Pairs ` V ) ) |
| 30 |
1
|
eleq2i |
|- ( ( 2nd ` g ) e. P <-> ( 2nd ` g ) e. ~P ( Pairs ` V ) ) |
| 31 |
|
fvex |
|- ( 2nd ` g ) e. _V |
| 32 |
31
|
elpw |
|- ( ( 2nd ` g ) e. ~P ( Pairs ` V ) <-> ( 2nd ` g ) C_ ( Pairs ` V ) ) |
| 33 |
30 32
|
bitri |
|- ( ( 2nd ` g ) e. P <-> ( 2nd ` g ) C_ ( Pairs ` V ) ) |
| 34 |
29 33
|
sylibr |
|- ( ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( 2nd ` g ) e. P ) |
| 35 |
34
|
exlimivv |
|- ( E. v E. e ( g = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( 2nd ` g ) e. P ) |
| 36 |
6 35
|
sylbi |
|- ( g e. G -> ( 2nd ` g ) e. P ) |
| 37 |
3 36
|
fmpti |
|- F : G --> P |