Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
|- P = ~P ( Pairs ` V ) |
2 |
|
uspgrsprf.g |
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
3 |
|
uspgrsprf.f |
|- F = ( g e. G |-> ( 2nd ` g ) ) |
4 |
1 2 3
|
uspgrsprf |
|- F : G --> P |
5 |
1 2 3
|
uspgrsprfv |
|- ( a e. G -> ( F ` a ) = ( 2nd ` a ) ) |
6 |
1 2 3
|
uspgrsprfv |
|- ( b e. G -> ( F ` b ) = ( 2nd ` b ) ) |
7 |
5 6
|
eqeqan12d |
|- ( ( a e. G /\ b e. G ) -> ( ( F ` a ) = ( F ` b ) <-> ( 2nd ` a ) = ( 2nd ` b ) ) ) |
8 |
2
|
eleq2i |
|- ( a e. G <-> a e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } ) |
9 |
|
elopab |
|- ( a e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } <-> E. v E. e ( a = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) ) |
10 |
|
opeq12 |
|- ( ( v = w /\ e = f ) -> <. v , e >. = <. w , f >. ) |
11 |
10
|
eqeq2d |
|- ( ( v = w /\ e = f ) -> ( a = <. v , e >. <-> a = <. w , f >. ) ) |
12 |
|
eqeq1 |
|- ( v = w -> ( v = V <-> w = V ) ) |
13 |
12
|
adantr |
|- ( ( v = w /\ e = f ) -> ( v = V <-> w = V ) ) |
14 |
|
eqeq2 |
|- ( v = w -> ( ( Vtx ` q ) = v <-> ( Vtx ` q ) = w ) ) |
15 |
|
eqeq2 |
|- ( e = f -> ( ( Edg ` q ) = e <-> ( Edg ` q ) = f ) ) |
16 |
14 15
|
bi2anan9 |
|- ( ( v = w /\ e = f ) -> ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) <-> ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) |
17 |
16
|
rexbidv |
|- ( ( v = w /\ e = f ) -> ( E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) <-> E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) |
18 |
13 17
|
anbi12d |
|- ( ( v = w /\ e = f ) -> ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) <-> ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) |
19 |
11 18
|
anbi12d |
|- ( ( v = w /\ e = f ) -> ( ( a = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) <-> ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) ) |
20 |
19
|
cbvex2vw |
|- ( E. v E. e ( a = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) <-> E. w E. f ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) |
21 |
8 9 20
|
3bitri |
|- ( a e. G <-> E. w E. f ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) |
22 |
2
|
eleq2i |
|- ( b e. G <-> b e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } ) |
23 |
|
elopab |
|- ( b e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } <-> E. v E. e ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) ) |
24 |
22 23
|
bitri |
|- ( b e. G <-> E. v E. e ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) ) |
25 |
|
eqeq2 |
|- ( w = V -> ( v = w <-> v = V ) ) |
26 |
|
opeq12 |
|- ( ( w = v /\ f = e ) -> <. w , f >. = <. v , e >. ) |
27 |
26
|
ex |
|- ( w = v -> ( f = e -> <. w , f >. = <. v , e >. ) ) |
28 |
27
|
equcoms |
|- ( v = w -> ( f = e -> <. w , f >. = <. v , e >. ) ) |
29 |
25 28
|
syl6bir |
|- ( w = V -> ( v = V -> ( f = e -> <. w , f >. = <. v , e >. ) ) ) |
30 |
29
|
ad2antrl |
|- ( ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( v = V -> ( f = e -> <. w , f >. = <. v , e >. ) ) ) |
31 |
30
|
com12 |
|- ( v = V -> ( ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( f = e -> <. w , f >. = <. v , e >. ) ) ) |
32 |
31
|
ad2antrl |
|- ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( f = e -> <. w , f >. = <. v , e >. ) ) ) |
33 |
32
|
imp |
|- ( ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) /\ ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) -> ( f = e -> <. w , f >. = <. v , e >. ) ) |
34 |
|
vex |
|- w e. _V |
35 |
|
vex |
|- f e. _V |
36 |
34 35
|
op2ndd |
|- ( a = <. w , f >. -> ( 2nd ` a ) = f ) |
37 |
36
|
ad2antrl |
|- ( ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) /\ ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) -> ( 2nd ` a ) = f ) |
38 |
|
vex |
|- v e. _V |
39 |
|
vex |
|- e e. _V |
40 |
38 39
|
op2ndd |
|- ( b = <. v , e >. -> ( 2nd ` b ) = e ) |
41 |
40
|
adantr |
|- ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( 2nd ` b ) = e ) |
42 |
41
|
adantr |
|- ( ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) /\ ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) -> ( 2nd ` b ) = e ) |
43 |
37 42
|
eqeq12d |
|- ( ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) /\ ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) -> ( ( 2nd ` a ) = ( 2nd ` b ) <-> f = e ) ) |
44 |
|
eqeq12 |
|- ( ( a = <. w , f >. /\ b = <. v , e >. ) -> ( a = b <-> <. w , f >. = <. v , e >. ) ) |
45 |
44
|
ex |
|- ( a = <. w , f >. -> ( b = <. v , e >. -> ( a = b <-> <. w , f >. = <. v , e >. ) ) ) |
46 |
45
|
adantr |
|- ( ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( b = <. v , e >. -> ( a = b <-> <. w , f >. = <. v , e >. ) ) ) |
47 |
46
|
com12 |
|- ( b = <. v , e >. -> ( ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( a = b <-> <. w , f >. = <. v , e >. ) ) ) |
48 |
47
|
adantr |
|- ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( a = b <-> <. w , f >. = <. v , e >. ) ) ) |
49 |
48
|
imp |
|- ( ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) /\ ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) -> ( a = b <-> <. w , f >. = <. v , e >. ) ) |
50 |
33 43 49
|
3imtr4d |
|- ( ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) /\ ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) ) -> ( ( 2nd ` a ) = ( 2nd ` b ) -> a = b ) ) |
51 |
50
|
ex |
|- ( ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( ( 2nd ` a ) = ( 2nd ` b ) -> a = b ) ) ) |
52 |
51
|
exlimivv |
|- ( E. v E. e ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( ( 2nd ` a ) = ( 2nd ` b ) -> a = b ) ) ) |
53 |
52
|
com12 |
|- ( ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( E. v E. e ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( ( 2nd ` a ) = ( 2nd ` b ) -> a = b ) ) ) |
54 |
53
|
exlimivv |
|- ( E. w E. f ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) -> ( E. v E. e ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> ( ( 2nd ` a ) = ( 2nd ` b ) -> a = b ) ) ) |
55 |
54
|
imp |
|- ( ( E. w E. f ( a = <. w , f >. /\ ( w = V /\ E. q e. USPGraph ( ( Vtx ` q ) = w /\ ( Edg ` q ) = f ) ) ) /\ E. v E. e ( b = <. v , e >. /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) ) -> ( ( 2nd ` a ) = ( 2nd ` b ) -> a = b ) ) |
56 |
21 24 55
|
syl2anb |
|- ( ( a e. G /\ b e. G ) -> ( ( 2nd ` a ) = ( 2nd ` b ) -> a = b ) ) |
57 |
7 56
|
sylbid |
|- ( ( a e. G /\ b e. G ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
58 |
57
|
rgen2 |
|- A. a e. G A. b e. G ( ( F ` a ) = ( F ` b ) -> a = b ) |
59 |
|
dff13 |
|- ( F : G -1-1-> P <-> ( F : G --> P /\ A. a e. G A. b e. G ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
60 |
4 58 59
|
mpbir2an |
|- F : G -1-1-> P |