Description: The value of the function F which maps a "simple pseudograph" for a fixed set V of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for G as defined here, the function F is a bijection between the "simple pseudographs" and the subsets of the set of pairs P over the fixed set V of vertices, see uspgrbispr . (Contributed by AV, 24-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrsprf.p | |- P = ~P ( Pairs ` V ) |
|
| uspgrsprf.g | |- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
||
| uspgrsprf.f | |- F = ( g e. G |-> ( 2nd ` g ) ) |
||
| Assertion | uspgrsprfv | |- ( X e. G -> ( F ` X ) = ( 2nd ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrsprf.p | |- P = ~P ( Pairs ` V ) |
|
| 2 | uspgrsprf.g | |- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
|
| 3 | uspgrsprf.f | |- F = ( g e. G |-> ( 2nd ` g ) ) |
|
| 4 | fveq2 | |- ( g = X -> ( 2nd ` g ) = ( 2nd ` X ) ) |
|
| 5 | id | |- ( X e. G -> X e. G ) |
|
| 6 | fvexd | |- ( X e. G -> ( 2nd ` X ) e. _V ) |
|
| 7 | 3 4 5 6 | fvmptd3 | |- ( X e. G -> ( F ` X ) = ( 2nd ` X ) ) |