Metamath Proof Explorer


Theorem uspgrsprfv

Description: The value of the function F which maps a "simple pseudograph" for a fixed set V of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for G as defined here, the function F is a bijection between the "simple pseudographs" and the subsets of the set of pairs P over the fixed set V of vertices, see uspgrbispr . (Contributed by AV, 24-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p
|- P = ~P ( Pairs ` V )
uspgrsprf.g
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
uspgrsprf.f
|- F = ( g e. G |-> ( 2nd ` g ) )
Assertion uspgrsprfv
|- ( X e. G -> ( F ` X ) = ( 2nd ` X ) )

Proof

Step Hyp Ref Expression
1 uspgrsprf.p
 |-  P = ~P ( Pairs ` V )
2 uspgrsprf.g
 |-  G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
3 uspgrsprf.f
 |-  F = ( g e. G |-> ( 2nd ` g ) )
4 fveq2
 |-  ( g = X -> ( 2nd ` g ) = ( 2nd ` X ) )
5 id
 |-  ( X e. G -> X e. G )
6 fvexd
 |-  ( X e. G -> ( 2nd ` X ) e. _V )
7 3 4 5 6 fvmptd3
 |-  ( X e. G -> ( F ` X ) = ( 2nd ` X ) )