Metamath Proof Explorer


Theorem uspgrsprfv

Description: The value of the function F which maps a "simple pseudograph" for a fixed set V of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for G as defined here, the function F is a bijection between the "simple pseudographs" and the subsets of the set of pairs P over the fixed set V of vertices, see uspgrbispr . (Contributed by AV, 24-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P = 𝒫 Pairs V
uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
uspgrsprf.f F = g G 2 nd g
Assertion uspgrsprfv X G F X = 2 nd X

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P = 𝒫 Pairs V
2 uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
3 uspgrsprf.f F = g G 2 nd g
4 fveq2 g = X 2 nd g = 2 nd X
5 id X G X G
6 fvexd X G 2 nd X V
7 3 4 5 6 fvmptd3 X G F X = 2 nd X