Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
|- P = ~P ( Pairs ` V ) |
2 |
|
uspgrsprf.g |
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
3 |
|
uspgrsprf.f |
|- F = ( g e. G |-> ( 2nd ` g ) ) |
4 |
1 2 3
|
uspgrsprf |
|- F : G --> P |
5 |
4
|
a1i |
|- ( V e. W -> F : G --> P ) |
6 |
1
|
eleq2i |
|- ( a e. P <-> a e. ~P ( Pairs ` V ) ) |
7 |
|
velpw |
|- ( a e. ~P ( Pairs ` V ) <-> a C_ ( Pairs ` V ) ) |
8 |
6 7
|
bitri |
|- ( a e. P <-> a C_ ( Pairs ` V ) ) |
9 |
|
eqidd |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> V = V ) |
10 |
|
vex |
|- a e. _V |
11 |
10
|
a1i |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> a e. _V ) |
12 |
|
f1oi |
|- ( _I |` a ) : a -1-1-onto-> a |
13 |
12
|
a1i |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( _I |` a ) : a -1-1-onto-> a ) |
14 |
|
dmresi |
|- dom ( _I |` a ) = a |
15 |
|
f1oeq2 |
|- ( dom ( _I |` a ) = a -> ( ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> a <-> ( _I |` a ) : a -1-1-onto-> a ) ) |
16 |
14 15
|
ax-mp |
|- ( ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> a <-> ( _I |` a ) : a -1-1-onto-> a ) |
17 |
13 16
|
sylibr |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> a ) |
18 |
|
sprvalpwle2 |
|- ( V e. W -> ( Pairs ` V ) = { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) |
19 |
18
|
sseq2d |
|- ( V e. W -> ( a C_ ( Pairs ` V ) <-> a C_ { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
20 |
19
|
biimpac |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> a C_ { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) |
21 |
17 20
|
jca |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> a /\ a C_ { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
22 |
|
f1oeq3 |
|- ( f = a -> ( ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> f <-> ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> a ) ) |
23 |
|
sseq1 |
|- ( f = a -> ( f C_ { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } <-> a C_ { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
24 |
22 23
|
anbi12d |
|- ( f = a -> ( ( ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> f /\ f C_ { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) <-> ( ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> a /\ a C_ { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) ) |
25 |
11 21 24
|
spcedv |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> E. f ( ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> f /\ f C_ { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
26 |
|
resiexg |
|- ( a e. _V -> ( _I |` a ) e. _V ) |
27 |
10 26
|
ax-mp |
|- ( _I |` a ) e. _V |
28 |
27
|
f11o |
|- ( ( _I |` a ) : dom ( _I |` a ) -1-1-> { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } <-> E. f ( ( _I |` a ) : dom ( _I |` a ) -1-1-onto-> f /\ f C_ { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
29 |
25 28
|
sylibr |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( _I |` a ) : dom ( _I |` a ) -1-1-> { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) |
30 |
10
|
a1i |
|- ( a C_ ( Pairs ` V ) -> a e. _V ) |
31 |
30
|
resiexd |
|- ( a C_ ( Pairs ` V ) -> ( _I |` a ) e. _V ) |
32 |
31
|
anim1ci |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( V e. W /\ ( _I |` a ) e. _V ) ) |
33 |
|
isuspgrop |
|- ( ( V e. W /\ ( _I |` a ) e. _V ) -> ( <. V , ( _I |` a ) >. e. USPGraph <-> ( _I |` a ) : dom ( _I |` a ) -1-1-> { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
34 |
32 33
|
syl |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( <. V , ( _I |` a ) >. e. USPGraph <-> ( _I |` a ) : dom ( _I |` a ) -1-1-> { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
35 |
29 34
|
mpbird |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> <. V , ( _I |` a ) >. e. USPGraph ) |
36 |
|
fveqeq2 |
|- ( q = <. V , ( _I |` a ) >. -> ( ( Vtx ` q ) = V <-> ( Vtx ` <. V , ( _I |` a ) >. ) = V ) ) |
37 |
|
fveqeq2 |
|- ( q = <. V , ( _I |` a ) >. -> ( ( Edg ` q ) = a <-> ( Edg ` <. V , ( _I |` a ) >. ) = a ) ) |
38 |
36 37
|
anbi12d |
|- ( q = <. V , ( _I |` a ) >. -> ( ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) <-> ( ( Vtx ` <. V , ( _I |` a ) >. ) = V /\ ( Edg ` <. V , ( _I |` a ) >. ) = a ) ) ) |
39 |
38
|
adantl |
|- ( ( ( a C_ ( Pairs ` V ) /\ V e. W ) /\ q = <. V , ( _I |` a ) >. ) -> ( ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) <-> ( ( Vtx ` <. V , ( _I |` a ) >. ) = V /\ ( Edg ` <. V , ( _I |` a ) >. ) = a ) ) ) |
40 |
|
opvtxfv |
|- ( ( V e. W /\ ( _I |` a ) e. _V ) -> ( Vtx ` <. V , ( _I |` a ) >. ) = V ) |
41 |
31 40
|
sylan2 |
|- ( ( V e. W /\ a C_ ( Pairs ` V ) ) -> ( Vtx ` <. V , ( _I |` a ) >. ) = V ) |
42 |
|
edgopval |
|- ( ( V e. W /\ ( _I |` a ) e. _V ) -> ( Edg ` <. V , ( _I |` a ) >. ) = ran ( _I |` a ) ) |
43 |
31 42
|
sylan2 |
|- ( ( V e. W /\ a C_ ( Pairs ` V ) ) -> ( Edg ` <. V , ( _I |` a ) >. ) = ran ( _I |` a ) ) |
44 |
|
rnresi |
|- ran ( _I |` a ) = a |
45 |
43 44
|
eqtrdi |
|- ( ( V e. W /\ a C_ ( Pairs ` V ) ) -> ( Edg ` <. V , ( _I |` a ) >. ) = a ) |
46 |
41 45
|
jca |
|- ( ( V e. W /\ a C_ ( Pairs ` V ) ) -> ( ( Vtx ` <. V , ( _I |` a ) >. ) = V /\ ( Edg ` <. V , ( _I |` a ) >. ) = a ) ) |
47 |
46
|
ancoms |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( ( Vtx ` <. V , ( _I |` a ) >. ) = V /\ ( Edg ` <. V , ( _I |` a ) >. ) = a ) ) |
48 |
35 39 47
|
rspcedvd |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> E. q e. USPGraph ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) ) |
49 |
9 48
|
jca |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( V = V /\ E. q e. USPGraph ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) ) ) |
50 |
2
|
eleq2i |
|- ( <. V , a >. e. G <-> <. V , a >. e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } ) |
51 |
30
|
anim1ci |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( V e. W /\ a e. _V ) ) |
52 |
|
eqeq1 |
|- ( v = V -> ( v = V <-> V = V ) ) |
53 |
52
|
adantr |
|- ( ( v = V /\ e = a ) -> ( v = V <-> V = V ) ) |
54 |
|
eqeq2 |
|- ( v = V -> ( ( Vtx ` q ) = v <-> ( Vtx ` q ) = V ) ) |
55 |
|
eqeq2 |
|- ( e = a -> ( ( Edg ` q ) = e <-> ( Edg ` q ) = a ) ) |
56 |
54 55
|
bi2anan9 |
|- ( ( v = V /\ e = a ) -> ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) <-> ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) ) ) |
57 |
56
|
rexbidv |
|- ( ( v = V /\ e = a ) -> ( E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) <-> E. q e. USPGraph ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) ) ) |
58 |
53 57
|
anbi12d |
|- ( ( v = V /\ e = a ) -> ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) <-> ( V = V /\ E. q e. USPGraph ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) ) ) ) |
59 |
58
|
opelopabga |
|- ( ( V e. W /\ a e. _V ) -> ( <. V , a >. e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } <-> ( V = V /\ E. q e. USPGraph ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) ) ) ) |
60 |
51 59
|
syl |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( <. V , a >. e. { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } <-> ( V = V /\ E. q e. USPGraph ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) ) ) ) |
61 |
50 60
|
syl5bb |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( <. V , a >. e. G <-> ( V = V /\ E. q e. USPGraph ( ( Vtx ` q ) = V /\ ( Edg ` q ) = a ) ) ) ) |
62 |
49 61
|
mpbird |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> <. V , a >. e. G ) |
63 |
|
fveq2 |
|- ( b = <. V , a >. -> ( 2nd ` b ) = ( 2nd ` <. V , a >. ) ) |
64 |
63
|
eqeq2d |
|- ( b = <. V , a >. -> ( a = ( 2nd ` b ) <-> a = ( 2nd ` <. V , a >. ) ) ) |
65 |
64
|
adantl |
|- ( ( ( a C_ ( Pairs ` V ) /\ V e. W ) /\ b = <. V , a >. ) -> ( a = ( 2nd ` b ) <-> a = ( 2nd ` <. V , a >. ) ) ) |
66 |
|
op2ndg |
|- ( ( V e. W /\ a e. _V ) -> ( 2nd ` <. V , a >. ) = a ) |
67 |
66
|
elvd |
|- ( V e. W -> ( 2nd ` <. V , a >. ) = a ) |
68 |
67
|
adantl |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> ( 2nd ` <. V , a >. ) = a ) |
69 |
68
|
eqcomd |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> a = ( 2nd ` <. V , a >. ) ) |
70 |
62 65 69
|
rspcedvd |
|- ( ( a C_ ( Pairs ` V ) /\ V e. W ) -> E. b e. G a = ( 2nd ` b ) ) |
71 |
70
|
ex |
|- ( a C_ ( Pairs ` V ) -> ( V e. W -> E. b e. G a = ( 2nd ` b ) ) ) |
72 |
8 71
|
sylbi |
|- ( a e. P -> ( V e. W -> E. b e. G a = ( 2nd ` b ) ) ) |
73 |
72
|
impcom |
|- ( ( V e. W /\ a e. P ) -> E. b e. G a = ( 2nd ` b ) ) |
74 |
1 2 3
|
uspgrsprfv |
|- ( b e. G -> ( F ` b ) = ( 2nd ` b ) ) |
75 |
74
|
adantl |
|- ( ( ( V e. W /\ a e. P ) /\ b e. G ) -> ( F ` b ) = ( 2nd ` b ) ) |
76 |
75
|
eqeq2d |
|- ( ( ( V e. W /\ a e. P ) /\ b e. G ) -> ( a = ( F ` b ) <-> a = ( 2nd ` b ) ) ) |
77 |
76
|
rexbidva |
|- ( ( V e. W /\ a e. P ) -> ( E. b e. G a = ( F ` b ) <-> E. b e. G a = ( 2nd ` b ) ) ) |
78 |
73 77
|
mpbird |
|- ( ( V e. W /\ a e. P ) -> E. b e. G a = ( F ` b ) ) |
79 |
78
|
ralrimiva |
|- ( V e. W -> A. a e. P E. b e. G a = ( F ` b ) ) |
80 |
|
dffo3 |
|- ( F : G -onto-> P <-> ( F : G --> P /\ A. a e. P E. b e. G a = ( F ` b ) ) ) |
81 |
5 79 80
|
sylanbrc |
|- ( V e. W -> F : G -onto-> P ) |