Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) |
2 |
|
uspgrsprf.g |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } |
3 |
|
uspgrsprf.f |
⊢ 𝐹 = ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) |
4 |
1 2 3
|
uspgrsprf |
⊢ 𝐹 : 𝐺 ⟶ 𝑃 |
5 |
4
|
a1i |
⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝐺 ⟶ 𝑃 ) |
6 |
1
|
eleq2i |
⊢ ( 𝑎 ∈ 𝑃 ↔ 𝑎 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ) |
7 |
|
velpw |
⊢ ( 𝑎 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↔ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) |
8 |
6 7
|
bitri |
⊢ ( 𝑎 ∈ 𝑃 ↔ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) |
9 |
|
eqidd |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 𝑉 = 𝑉 ) |
10 |
|
vex |
⊢ 𝑎 ∈ V |
11 |
10
|
a1i |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 𝑎 ∈ V ) |
12 |
|
f1oi |
⊢ ( I ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝑎 |
13 |
12
|
a1i |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( I ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝑎 ) |
14 |
|
dmresi |
⊢ dom ( I ↾ 𝑎 ) = 𝑎 |
15 |
|
f1oeq2 |
⊢ ( dom ( I ↾ 𝑎 ) = 𝑎 → ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ↔ ( I ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝑎 ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ↔ ( I ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝑎 ) |
17 |
13 16
|
sylibr |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ) |
18 |
|
sprvalpwle2 |
⊢ ( 𝑉 ∈ 𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
19 |
18
|
sseq2d |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ↔ 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
20 |
19
|
biimpac |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
21 |
17 20
|
jca |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ∧ 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
22 |
|
f1oeq3 |
⊢ ( 𝑓 = 𝑎 → ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑓 ↔ ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ) ) |
23 |
|
sseq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
24 |
22 23
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑓 ∧ 𝑓 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ↔ ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ∧ 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) |
25 |
11 21 24
|
spcedv |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ∃ 𝑓 ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑓 ∧ 𝑓 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
26 |
|
resiexg |
⊢ ( 𝑎 ∈ V → ( I ↾ 𝑎 ) ∈ V ) |
27 |
10 26
|
ax-mp |
⊢ ( I ↾ 𝑎 ) ∈ V |
28 |
27
|
f11o |
⊢ ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ∃ 𝑓 ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑓 ∧ 𝑓 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
29 |
25 28
|
sylibr |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
30 |
10
|
a1i |
⊢ ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) → 𝑎 ∈ V ) |
31 |
30
|
resiexd |
⊢ ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) → ( I ↾ 𝑎 ) ∈ V ) |
32 |
31
|
anim1ci |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑎 ) ∈ V ) ) |
33 |
|
isuspgrop |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑎 ) ∈ V ) → ( 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ∈ USPGraph ↔ ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
34 |
32 33
|
syl |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ∈ USPGraph ↔ ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
35 |
29 34
|
mpbird |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ∈ USPGraph ) |
36 |
|
fveqeq2 |
⊢ ( 𝑞 = 〈 𝑉 , ( I ↾ 𝑎 ) 〉 → ( ( Vtx ‘ 𝑞 ) = 𝑉 ↔ ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ) ) |
37 |
|
fveqeq2 |
⊢ ( 𝑞 = 〈 𝑉 , ( I ↾ 𝑎 ) 〉 → ( ( Edg ‘ 𝑞 ) = 𝑎 ↔ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) |
38 |
36 37
|
anbi12d |
⊢ ( 𝑞 = 〈 𝑉 , ( I ↾ 𝑎 ) 〉 → ( ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ↔ ( ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ∧ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) ) |
39 |
38
|
adantl |
⊢ ( ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) ∧ 𝑞 = 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) → ( ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ↔ ( ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ∧ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) ) |
40 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑎 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ) |
41 |
31 40
|
sylan2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ) |
42 |
|
edgopval |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑎 ) ∈ V ) → ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = ran ( I ↾ 𝑎 ) ) |
43 |
31 42
|
sylan2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = ran ( I ↾ 𝑎 ) ) |
44 |
|
rnresi |
⊢ ran ( I ↾ 𝑎 ) = 𝑎 |
45 |
43 44
|
eqtrdi |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) |
46 |
41 45
|
jca |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ∧ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) |
47 |
46
|
ancoms |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ∧ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) |
48 |
35 39 47
|
rspcedvd |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) |
49 |
9 48
|
jca |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) |
50 |
2
|
eleq2i |
⊢ ( 〈 𝑉 , 𝑎 〉 ∈ 𝐺 ↔ 〈 𝑉 , 𝑎 〉 ∈ { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ) |
51 |
30
|
anim1ci |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ V ) ) |
52 |
|
eqeq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 = 𝑉 ↔ 𝑉 = 𝑉 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝑎 ) → ( 𝑣 = 𝑉 ↔ 𝑉 = 𝑉 ) ) |
54 |
|
eqeq2 |
⊢ ( 𝑣 = 𝑉 → ( ( Vtx ‘ 𝑞 ) = 𝑣 ↔ ( Vtx ‘ 𝑞 ) = 𝑉 ) ) |
55 |
|
eqeq2 |
⊢ ( 𝑒 = 𝑎 → ( ( Edg ‘ 𝑞 ) = 𝑒 ↔ ( Edg ‘ 𝑞 ) = 𝑎 ) ) |
56 |
54 55
|
bi2anan9 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝑎 ) → ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ↔ ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) |
57 |
56
|
rexbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝑎 ) → ( ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ↔ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) |
58 |
53 57
|
anbi12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝑎 ) → ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ↔ ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) ) |
59 |
58
|
opelopabga |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ V ) → ( 〈 𝑉 , 𝑎 〉 ∈ { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ↔ ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) ) |
60 |
51 59
|
syl |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 〈 𝑉 , 𝑎 〉 ∈ { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ↔ ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) ) |
61 |
50 60
|
syl5bb |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 〈 𝑉 , 𝑎 〉 ∈ 𝐺 ↔ ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) ) |
62 |
49 61
|
mpbird |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 〈 𝑉 , 𝑎 〉 ∈ 𝐺 ) |
63 |
|
fveq2 |
⊢ ( 𝑏 = 〈 𝑉 , 𝑎 〉 → ( 2nd ‘ 𝑏 ) = ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) ) |
64 |
63
|
eqeq2d |
⊢ ( 𝑏 = 〈 𝑉 , 𝑎 〉 → ( 𝑎 = ( 2nd ‘ 𝑏 ) ↔ 𝑎 = ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) ) ) |
65 |
64
|
adantl |
⊢ ( ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) ∧ 𝑏 = 〈 𝑉 , 𝑎 〉 ) → ( 𝑎 = ( 2nd ‘ 𝑏 ) ↔ 𝑎 = ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) ) ) |
66 |
|
op2ndg |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ V ) → ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) = 𝑎 ) |
67 |
66
|
elvd |
⊢ ( 𝑉 ∈ 𝑊 → ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) = 𝑎 ) |
68 |
67
|
adantl |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) = 𝑎 ) |
69 |
68
|
eqcomd |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 𝑎 = ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) ) |
70 |
62 65 69
|
rspcedvd |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) |
71 |
70
|
ex |
⊢ ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) → ( 𝑉 ∈ 𝑊 → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) ) |
72 |
8 71
|
sylbi |
⊢ ( 𝑎 ∈ 𝑃 → ( 𝑉 ∈ 𝑊 → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) ) |
73 |
72
|
impcom |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) |
74 |
1 2 3
|
uspgrsprfv |
⊢ ( 𝑏 ∈ 𝐺 → ( 𝐹 ‘ 𝑏 ) = ( 2nd ‘ 𝑏 ) ) |
75 |
74
|
adantl |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝐺 ) → ( 𝐹 ‘ 𝑏 ) = ( 2nd ‘ 𝑏 ) ) |
76 |
75
|
eqeq2d |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝐺 ) → ( 𝑎 = ( 𝐹 ‘ 𝑏 ) ↔ 𝑎 = ( 2nd ‘ 𝑏 ) ) ) |
77 |
76
|
rexbidva |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) → ( ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐹 ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) ) |
78 |
73 77
|
mpbird |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
79 |
78
|
ralrimiva |
⊢ ( 𝑉 ∈ 𝑊 → ∀ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
80 |
|
dffo3 |
⊢ ( 𝐹 : 𝐺 –onto→ 𝑃 ↔ ( 𝐹 : 𝐺 ⟶ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐹 ‘ 𝑏 ) ) ) |
81 |
5 79 80
|
sylanbrc |
⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝐺 –onto→ 𝑃 ) |