| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrsprf.p |
⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) |
| 2 |
|
uspgrsprf.g |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } |
| 3 |
|
uspgrsprf.f |
⊢ 𝐹 = ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) |
| 4 |
1 2 3
|
uspgrsprf |
⊢ 𝐹 : 𝐺 ⟶ 𝑃 |
| 5 |
4
|
a1i |
⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝐺 ⟶ 𝑃 ) |
| 6 |
1
|
eleq2i |
⊢ ( 𝑎 ∈ 𝑃 ↔ 𝑎 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ) |
| 7 |
|
velpw |
⊢ ( 𝑎 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↔ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) |
| 8 |
6 7
|
bitri |
⊢ ( 𝑎 ∈ 𝑃 ↔ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) |
| 9 |
|
eqidd |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 𝑉 = 𝑉 ) |
| 10 |
|
vex |
⊢ 𝑎 ∈ V |
| 11 |
10
|
a1i |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 𝑎 ∈ V ) |
| 12 |
|
f1oi |
⊢ ( I ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝑎 |
| 13 |
12
|
a1i |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( I ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝑎 ) |
| 14 |
|
dmresi |
⊢ dom ( I ↾ 𝑎 ) = 𝑎 |
| 15 |
|
f1oeq2 |
⊢ ( dom ( I ↾ 𝑎 ) = 𝑎 → ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ↔ ( I ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝑎 ) ) |
| 16 |
14 15
|
ax-mp |
⊢ ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ↔ ( I ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝑎 ) |
| 17 |
13 16
|
sylibr |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ) |
| 18 |
|
sprvalpwle2 |
⊢ ( 𝑉 ∈ 𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 19 |
18
|
sseq2d |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ↔ 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 20 |
19
|
biimpac |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 21 |
17 20
|
jca |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ∧ 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 22 |
|
f1oeq3 |
⊢ ( 𝑓 = 𝑎 → ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑓 ↔ ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ) ) |
| 23 |
|
sseq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 24 |
22 23
|
anbi12d |
⊢ ( 𝑓 = 𝑎 → ( ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑓 ∧ 𝑓 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ↔ ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑎 ∧ 𝑎 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) |
| 25 |
11 21 24
|
spcedv |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ∃ 𝑓 ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑓 ∧ 𝑓 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 26 |
|
resiexg |
⊢ ( 𝑎 ∈ V → ( I ↾ 𝑎 ) ∈ V ) |
| 27 |
10 26
|
ax-mp |
⊢ ( I ↾ 𝑎 ) ∈ V |
| 28 |
27
|
f11o |
⊢ ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ∃ 𝑓 ( ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1-onto→ 𝑓 ∧ 𝑓 ⊆ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 29 |
25 28
|
sylibr |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 30 |
10
|
a1i |
⊢ ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) → 𝑎 ∈ V ) |
| 31 |
30
|
resiexd |
⊢ ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) → ( I ↾ 𝑎 ) ∈ V ) |
| 32 |
31
|
anim1ci |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑎 ) ∈ V ) ) |
| 33 |
|
isuspgrop |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑎 ) ∈ V ) → ( 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ∈ USPGraph ↔ ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ∈ USPGraph ↔ ( I ↾ 𝑎 ) : dom ( I ↾ 𝑎 ) –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 35 |
29 34
|
mpbird |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ∈ USPGraph ) |
| 36 |
|
fveqeq2 |
⊢ ( 𝑞 = 〈 𝑉 , ( I ↾ 𝑎 ) 〉 → ( ( Vtx ‘ 𝑞 ) = 𝑉 ↔ ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ) ) |
| 37 |
|
fveqeq2 |
⊢ ( 𝑞 = 〈 𝑉 , ( I ↾ 𝑎 ) 〉 → ( ( Edg ‘ 𝑞 ) = 𝑎 ↔ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) |
| 38 |
36 37
|
anbi12d |
⊢ ( 𝑞 = 〈 𝑉 , ( I ↾ 𝑎 ) 〉 → ( ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ↔ ( ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ∧ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) ) |
| 39 |
38
|
adantl |
⊢ ( ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) ∧ 𝑞 = 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) → ( ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ↔ ( ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ∧ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) ) |
| 40 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑎 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ) |
| 41 |
31 40
|
sylan2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ) |
| 42 |
|
edgopval |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑎 ) ∈ V ) → ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = ran ( I ↾ 𝑎 ) ) |
| 43 |
31 42
|
sylan2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = ran ( I ↾ 𝑎 ) ) |
| 44 |
|
rnresi |
⊢ ran ( I ↾ 𝑎 ) = 𝑎 |
| 45 |
43 44
|
eqtrdi |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) |
| 46 |
41 45
|
jca |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ∧ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) |
| 47 |
46
|
ancoms |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑉 ∧ ( Edg ‘ 〈 𝑉 , ( I ↾ 𝑎 ) 〉 ) = 𝑎 ) ) |
| 48 |
35 39 47
|
rspcedvd |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) |
| 49 |
9 48
|
jca |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) |
| 50 |
2
|
eleq2i |
⊢ ( 〈 𝑉 , 𝑎 〉 ∈ 𝐺 ↔ 〈 𝑉 , 𝑎 〉 ∈ { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ) |
| 51 |
30
|
anim1ci |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ V ) ) |
| 52 |
|
eqeq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 = 𝑉 ↔ 𝑉 = 𝑉 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝑎 ) → ( 𝑣 = 𝑉 ↔ 𝑉 = 𝑉 ) ) |
| 54 |
|
eqeq2 |
⊢ ( 𝑣 = 𝑉 → ( ( Vtx ‘ 𝑞 ) = 𝑣 ↔ ( Vtx ‘ 𝑞 ) = 𝑉 ) ) |
| 55 |
|
eqeq2 |
⊢ ( 𝑒 = 𝑎 → ( ( Edg ‘ 𝑞 ) = 𝑒 ↔ ( Edg ‘ 𝑞 ) = 𝑎 ) ) |
| 56 |
54 55
|
bi2anan9 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝑎 ) → ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ↔ ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) |
| 57 |
56
|
rexbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝑎 ) → ( ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ↔ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) |
| 58 |
53 57
|
anbi12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝑎 ) → ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ↔ ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) ) |
| 59 |
58
|
opelopabga |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ V ) → ( 〈 𝑉 , 𝑎 〉 ∈ { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ↔ ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) ) |
| 60 |
51 59
|
syl |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 〈 𝑉 , 𝑎 〉 ∈ { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ↔ ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) ) |
| 61 |
50 60
|
bitrid |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 〈 𝑉 , 𝑎 〉 ∈ 𝐺 ↔ ( 𝑉 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑉 ∧ ( Edg ‘ 𝑞 ) = 𝑎 ) ) ) ) |
| 62 |
49 61
|
mpbird |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 〈 𝑉 , 𝑎 〉 ∈ 𝐺 ) |
| 63 |
|
fveq2 |
⊢ ( 𝑏 = 〈 𝑉 , 𝑎 〉 → ( 2nd ‘ 𝑏 ) = ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) ) |
| 64 |
63
|
eqeq2d |
⊢ ( 𝑏 = 〈 𝑉 , 𝑎 〉 → ( 𝑎 = ( 2nd ‘ 𝑏 ) ↔ 𝑎 = ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) ) ) |
| 65 |
64
|
adantl |
⊢ ( ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) ∧ 𝑏 = 〈 𝑉 , 𝑎 〉 ) → ( 𝑎 = ( 2nd ‘ 𝑏 ) ↔ 𝑎 = ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) ) ) |
| 66 |
|
op2ndg |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ V ) → ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) = 𝑎 ) |
| 67 |
66
|
elvd |
⊢ ( 𝑉 ∈ 𝑊 → ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) = 𝑎 ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) = 𝑎 ) |
| 69 |
68
|
eqcomd |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → 𝑎 = ( 2nd ‘ 〈 𝑉 , 𝑎 〉 ) ) |
| 70 |
62 65 69
|
rspcedvd |
⊢ ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑉 ∈ 𝑊 ) → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) |
| 71 |
70
|
ex |
⊢ ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) → ( 𝑉 ∈ 𝑊 → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) ) |
| 72 |
8 71
|
sylbi |
⊢ ( 𝑎 ∈ 𝑃 → ( 𝑉 ∈ 𝑊 → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) ) |
| 73 |
72
|
impcom |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) |
| 74 |
1 2 3
|
uspgrsprfv |
⊢ ( 𝑏 ∈ 𝐺 → ( 𝐹 ‘ 𝑏 ) = ( 2nd ‘ 𝑏 ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝐺 ) → ( 𝐹 ‘ 𝑏 ) = ( 2nd ‘ 𝑏 ) ) |
| 76 |
75
|
eqeq2d |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝐺 ) → ( 𝑎 = ( 𝐹 ‘ 𝑏 ) ↔ 𝑎 = ( 2nd ‘ 𝑏 ) ) ) |
| 77 |
76
|
rexbidva |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) → ( ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐹 ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐺 𝑎 = ( 2nd ‘ 𝑏 ) ) ) |
| 78 |
73 77
|
mpbird |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑃 ) → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
| 79 |
78
|
ralrimiva |
⊢ ( 𝑉 ∈ 𝑊 → ∀ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
| 80 |
|
dffo3 |
⊢ ( 𝐹 : 𝐺 –onto→ 𝑃 ↔ ( 𝐹 : 𝐺 ⟶ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐹 ‘ 𝑏 ) ) ) |
| 81 |
5 79 80
|
sylanbrc |
⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝐺 –onto→ 𝑃 ) |