Metamath Proof Explorer


Theorem isuspgrop

Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of Bollobas p. 1. (Contributed by AV, 25-Nov-2021)

Ref Expression
Assertion isuspgrop ( ( 𝑉𝑊𝐸𝑋 ) → ( ⟨ 𝑉 , 𝐸 ⟩ ∈ USPGraph ↔ 𝐸 : dom 𝐸1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) )

Proof

Step Hyp Ref Expression
1 opex 𝑉 , 𝐸 ⟩ ∈ V
2 eqid ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ )
3 eqid ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ )
4 2 3 isuspgr ( ⟨ 𝑉 , 𝐸 ⟩ ∈ V → ( ⟨ 𝑉 , 𝐸 ⟩ ∈ USPGraph ↔ ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) : dom ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) –1-1→ { 𝑝 ∈ ( 𝒫 ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) )
5 1 4 mp1i ( ( 𝑉𝑊𝐸𝑋 ) → ( ⟨ 𝑉 , 𝐸 ⟩ ∈ USPGraph ↔ ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) : dom ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) –1-1→ { 𝑝 ∈ ( 𝒫 ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) )
6 opiedgfv ( ( 𝑉𝑊𝐸𝑋 ) → ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = 𝐸 )
7 6 dmeqd ( ( 𝑉𝑊𝐸𝑋 ) → dom ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = dom 𝐸 )
8 opvtxfv ( ( 𝑉𝑊𝐸𝑋 ) → ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = 𝑉 )
9 8 pweqd ( ( 𝑉𝑊𝐸𝑋 ) → 𝒫 ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = 𝒫 𝑉 )
10 9 difeq1d ( ( 𝑉𝑊𝐸𝑋 ) → ( 𝒫 ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) )
11 10 rabeqdv ( ( 𝑉𝑊𝐸𝑋 ) → { 𝑝 ∈ ( 𝒫 ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } )
12 6 7 11 f1eq123d ( ( 𝑉𝑊𝐸𝑋 ) → ( ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) : dom ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) –1-1→ { 𝑝 ∈ ( 𝒫 ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ 𝐸 : dom 𝐸1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) )
13 5 12 bitrd ( ( 𝑉𝑊𝐸𝑋 ) → ( ⟨ 𝑉 , 𝐸 ⟩ ∈ USPGraph ↔ 𝐸 : dom 𝐸1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) )