Metamath Proof Explorer


Theorem isuspgrop

Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of Bollobas p. 1. (Contributed by AV, 25-Nov-2021)

Ref Expression
Assertion isuspgrop VWEXVEUSHGraphE:domE1-1p𝒫V|p2

Proof

Step Hyp Ref Expression
1 opex VEV
2 eqid VtxVE=VtxVE
3 eqid iEdgVE=iEdgVE
4 2 3 isuspgr VEVVEUSHGraphiEdgVE:domiEdgVE1-1p𝒫VtxVE|p2
5 1 4 mp1i VWEXVEUSHGraphiEdgVE:domiEdgVE1-1p𝒫VtxVE|p2
6 opiedgfv VWEXiEdgVE=E
7 6 dmeqd VWEXdomiEdgVE=domE
8 opvtxfv VWEXVtxVE=V
9 8 pweqd VWEX𝒫VtxVE=𝒫V
10 9 difeq1d VWEX𝒫VtxVE=𝒫V
11 10 rabeqdv VWEXp𝒫VtxVE|p2=p𝒫V|p2
12 6 7 11 f1eq123d VWEXiEdgVE:domiEdgVE1-1p𝒫VtxVE|p2E:domE1-1p𝒫V|p2
13 5 12 bitrd VWEXVEUSHGraphE:domE1-1p𝒫V|p2