Metamath Proof Explorer


Theorem upgredgssspr

Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 24-Nov-2021)

Ref Expression
Assertion upgredgssspr
|- ( G e. UPGraph -> ( Edg ` G ) C_ ( Pairs ` ( Vtx ` G ) ) )

Proof

Step Hyp Ref Expression
1 upgredgss
 |-  ( G e. UPGraph -> ( Edg ` G ) C_ { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } )
2 fvex
 |-  ( Vtx ` G ) e. _V
3 sprvalpwle2
 |-  ( ( Vtx ` G ) e. _V -> ( Pairs ` ( Vtx ` G ) ) = { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } )
4 2 3 ax-mp
 |-  ( Pairs ` ( Vtx ` G ) ) = { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 }
5 1 4 sseqtrrdi
 |-  ( G e. UPGraph -> ( Edg ` G ) C_ ( Pairs ` ( Vtx ` G ) ) )