| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrsprf.p |
|- P = ~P ( Pairs ` V ) |
| 2 |
|
uspgrsprf.g |
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
| 3 |
|
eleq1 |
|- ( V = v -> ( V e. W <-> v e. W ) ) |
| 4 |
3
|
eqcoms |
|- ( v = V -> ( V e. W <-> v e. W ) ) |
| 5 |
4
|
adantr |
|- ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> ( V e. W <-> v e. W ) ) |
| 6 |
5
|
biimpac |
|- ( ( V e. W /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> v e. W ) |
| 7 |
|
uspgrupgr |
|- ( q e. USPGraph -> q e. UPGraph ) |
| 8 |
|
upgredgssspr |
|- ( q e. UPGraph -> ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) ) |
| 9 |
7 8
|
syl |
|- ( q e. USPGraph -> ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> ( Edg ` q ) C_ ( Pairs ` ( Vtx ` q ) ) ) |
| 11 |
|
simp2l |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> ( Vtx ` q ) = v ) |
| 12 |
|
simp3 |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> v = V ) |
| 13 |
11 12
|
eqtrd |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> ( Vtx ` q ) = V ) |
| 14 |
13
|
fveq2d |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> ( Pairs ` ( Vtx ` q ) ) = ( Pairs ` V ) ) |
| 15 |
10 14
|
sseqtrd |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> ( Edg ` q ) C_ ( Pairs ` V ) ) |
| 16 |
|
fvex |
|- ( Edg ` q ) e. _V |
| 17 |
16
|
elpw |
|- ( ( Edg ` q ) e. ~P ( Pairs ` V ) <-> ( Edg ` q ) C_ ( Pairs ` V ) ) |
| 18 |
15 17
|
sylibr |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> ( Edg ` q ) e. ~P ( Pairs ` V ) ) |
| 19 |
|
simpr |
|- ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> ( Edg ` q ) = e ) |
| 20 |
19
|
eqcomd |
|- ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> e = ( Edg ` q ) ) |
| 21 |
20
|
3ad2ant2 |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> e = ( Edg ` q ) ) |
| 22 |
1
|
a1i |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> P = ~P ( Pairs ` V ) ) |
| 23 |
18 21 22
|
3eltr4d |
|- ( ( q e. USPGraph /\ ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) /\ v = V ) -> e e. P ) |
| 24 |
23
|
3exp |
|- ( q e. USPGraph -> ( ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> ( v = V -> e e. P ) ) ) |
| 25 |
24
|
rexlimiv |
|- ( E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) -> ( v = V -> e e. P ) ) |
| 26 |
25
|
impcom |
|- ( ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) -> e e. P ) |
| 27 |
26
|
adantl |
|- ( ( V e. W /\ ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) ) -> e e. P ) |
| 28 |
6 27
|
opabssxpd |
|- ( V e. W -> { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } C_ ( W X. P ) ) |
| 29 |
2 28
|
eqsstrid |
|- ( V e. W -> G C_ ( W X. P ) ) |