Metamath Proof Explorer


Theorem uspgropssxp

Description: The set G of "simple pseudographs" for a fixed set V of vertices is a subset of a Cartesian product. For more details about the class G of all "simple pseudographs" see comments on uspgrbisymrel . (Contributed by AV, 24-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P = 𝒫 Pairs V
uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
Assertion uspgropssxp V W G W × P

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P = 𝒫 Pairs V
2 uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
3 eleq1 V = v V W v W
4 3 eqcoms v = V V W v W
5 4 adantr v = V q USHGraph Vtx q = v Edg q = e V W v W
6 5 biimpac V W v = V q USHGraph Vtx q = v Edg q = e v W
7 uspgrupgr q USHGraph q UPGraph
8 upgredgssspr q UPGraph Edg q Pairs Vtx q
9 7 8 syl q USHGraph Edg q Pairs Vtx q
10 9 3ad2ant1 q USHGraph Vtx q = v Edg q = e v = V Edg q Pairs Vtx q
11 simp2l q USHGraph Vtx q = v Edg q = e v = V Vtx q = v
12 simp3 q USHGraph Vtx q = v Edg q = e v = V v = V
13 11 12 eqtrd q USHGraph Vtx q = v Edg q = e v = V Vtx q = V
14 13 fveq2d q USHGraph Vtx q = v Edg q = e v = V Pairs Vtx q = Pairs V
15 10 14 sseqtrd q USHGraph Vtx q = v Edg q = e v = V Edg q Pairs V
16 fvex Edg q V
17 16 elpw Edg q 𝒫 Pairs V Edg q Pairs V
18 15 17 sylibr q USHGraph Vtx q = v Edg q = e v = V Edg q 𝒫 Pairs V
19 simpr Vtx q = v Edg q = e Edg q = e
20 19 eqcomd Vtx q = v Edg q = e e = Edg q
21 20 3ad2ant2 q USHGraph Vtx q = v Edg q = e v = V e = Edg q
22 1 a1i q USHGraph Vtx q = v Edg q = e v = V P = 𝒫 Pairs V
23 18 21 22 3eltr4d q USHGraph Vtx q = v Edg q = e v = V e P
24 23 3exp q USHGraph Vtx q = v Edg q = e v = V e P
25 24 rexlimiv q USHGraph Vtx q = v Edg q = e v = V e P
26 25 impcom v = V q USHGraph Vtx q = v Edg q = e e P
27 26 adantl V W v = V q USHGraph Vtx q = v Edg q = e e P
28 6 27 opabssxpd V W v e | v = V q USHGraph Vtx q = v Edg q = e W × P
29 2 28 eqsstrid V W G W × P