Metamath Proof Explorer


Theorem uspgropssxp

Description: The set G of "simple pseudographs" for a fixed set V of vertices is a subset of a Cartesian product. For more details about the class G of all "simple pseudographs" see comments on uspgrbisymrel . (Contributed by AV, 24-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
Assertion uspgropssxp ( 𝑉𝑊𝐺 ⊆ ( 𝑊 × 𝑃 ) )

Proof

Step Hyp Ref Expression
1 uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
3 eleq1 ( 𝑉 = 𝑣 → ( 𝑉𝑊𝑣𝑊 ) )
4 3 eqcoms ( 𝑣 = 𝑉 → ( 𝑉𝑊𝑣𝑊 ) )
5 4 adantr ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → ( 𝑉𝑊𝑣𝑊 ) )
6 5 biimpac ( ( 𝑉𝑊 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → 𝑣𝑊 )
7 uspgrupgr ( 𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph )
8 upgredgssspr ( 𝑞 ∈ UPGraph → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) )
9 7 8 syl ( 𝑞 ∈ USPGraph → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) )
10 9 3ad2ant1 ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) )
11 simp2l ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Vtx ‘ 𝑞 ) = 𝑣 )
12 simp3 ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → 𝑣 = 𝑉 )
13 11 12 eqtrd ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Vtx ‘ 𝑞 ) = 𝑉 )
14 13 fveq2d ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) = ( Pairs ‘ 𝑉 ) )
15 10 14 sseqtrd ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ 𝑉 ) )
16 fvex ( Edg ‘ 𝑞 ) ∈ V
17 16 elpw ( ( Edg ‘ 𝑞 ) ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↔ ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ 𝑉 ) )
18 15 17 sylibr ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Edg ‘ 𝑞 ) ∈ 𝒫 ( Pairs ‘ 𝑉 ) )
19 simpr ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( Edg ‘ 𝑞 ) = 𝑒 )
20 19 eqcomd ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → 𝑒 = ( Edg ‘ 𝑞 ) )
21 20 3ad2ant2 ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → 𝑒 = ( Edg ‘ 𝑞 ) )
22 1 a1i ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) )
23 18 21 22 3eltr4d ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → 𝑒𝑃 )
24 23 3exp ( 𝑞 ∈ USPGraph → ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( 𝑣 = 𝑉𝑒𝑃 ) ) )
25 24 rexlimiv ( ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( 𝑣 = 𝑉𝑒𝑃 ) )
26 25 impcom ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → 𝑒𝑃 )
27 26 adantl ( ( 𝑉𝑊 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → 𝑒𝑃 )
28 6 27 opabssxpd ( 𝑉𝑊 → { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ⊆ ( 𝑊 × 𝑃 ) )
29 2 28 eqsstrid ( 𝑉𝑊𝐺 ⊆ ( 𝑊 × 𝑃 ) )