Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) |
2 |
|
uspgrsprf.g |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } |
3 |
|
eleq1 |
⊢ ( 𝑉 = 𝑣 → ( 𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊 ) ) |
4 |
3
|
eqcoms |
⊢ ( 𝑣 = 𝑉 → ( 𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → ( 𝑉 ∈ 𝑊 ↔ 𝑣 ∈ 𝑊 ) ) |
6 |
5
|
biimpac |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → 𝑣 ∈ 𝑊 ) |
7 |
|
uspgrupgr |
⊢ ( 𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph ) |
8 |
|
upgredgssspr |
⊢ ( 𝑞 ∈ UPGraph → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑞 ∈ USPGraph → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) ) |
11 |
|
simp2l |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Vtx ‘ 𝑞 ) = 𝑣 ) |
12 |
|
simp3 |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → 𝑣 = 𝑉 ) |
13 |
11 12
|
eqtrd |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Vtx ‘ 𝑞 ) = 𝑉 ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Pairs ‘ ( Vtx ‘ 𝑞 ) ) = ( Pairs ‘ 𝑉 ) ) |
15 |
10 14
|
sseqtrd |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ 𝑉 ) ) |
16 |
|
fvex |
⊢ ( Edg ‘ 𝑞 ) ∈ V |
17 |
16
|
elpw |
⊢ ( ( Edg ‘ 𝑞 ) ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↔ ( Edg ‘ 𝑞 ) ⊆ ( Pairs ‘ 𝑉 ) ) |
18 |
15 17
|
sylibr |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → ( Edg ‘ 𝑞 ) ∈ 𝒫 ( Pairs ‘ 𝑉 ) ) |
19 |
|
simpr |
⊢ ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( Edg ‘ 𝑞 ) = 𝑒 ) |
20 |
19
|
eqcomd |
⊢ ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → 𝑒 = ( Edg ‘ 𝑞 ) ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → 𝑒 = ( Edg ‘ 𝑞 ) ) |
22 |
1
|
a1i |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) ) |
23 |
18 21 22
|
3eltr4d |
⊢ ( ( 𝑞 ∈ USPGraph ∧ ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ∧ 𝑣 = 𝑉 ) → 𝑒 ∈ 𝑃 ) |
24 |
23
|
3exp |
⊢ ( 𝑞 ∈ USPGraph → ( ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( 𝑣 = 𝑉 → 𝑒 ∈ 𝑃 ) ) ) |
25 |
24
|
rexlimiv |
⊢ ( ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) → ( 𝑣 = 𝑉 → 𝑒 ∈ 𝑃 ) ) |
26 |
25
|
impcom |
⊢ ( ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) → 𝑒 ∈ 𝑃 ) |
27 |
26
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) ) → 𝑒 ∈ 𝑃 ) |
28 |
6 27
|
opabssxpd |
⊢ ( 𝑉 ∈ 𝑊 → { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } ⊆ ( 𝑊 × 𝑃 ) ) |
29 |
2 28
|
eqsstrid |
⊢ ( 𝑉 ∈ 𝑊 → 𝐺 ⊆ ( 𝑊 × 𝑃 ) ) |