Metamath Proof Explorer


Theorem upgredgssspr

Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 24-Nov-2021)

Ref Expression
Assertion upgredgssspr ( 𝐺 ∈ UPGraph → ( Edg ‘ 𝐺 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 upgredgss ( 𝐺 ∈ UPGraph → ( Edg ‘ 𝐺 ) ⊆ { 𝑝 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } )
2 fvex ( Vtx ‘ 𝐺 ) ∈ V
3 sprvalpwle2 ( ( Vtx ‘ 𝐺 ) ∈ V → ( Pairs ‘ ( Vtx ‘ 𝐺 ) ) = { 𝑝 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } )
4 2 3 ax-mp ( Pairs ‘ ( Vtx ‘ 𝐺 ) ) = { 𝑝 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 }
5 1 4 sseqtrrdi ( 𝐺 ∈ UPGraph → ( Edg ‘ 𝐺 ) ⊆ ( Pairs ‘ ( Vtx ‘ 𝐺 ) ) )