Metamath Proof Explorer


Theorem uspgrex

Description: The class G of all "simple pseudographs" with a fixed set of vertices V is a set. (Contributed by AV, 26-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
Assertion uspgrex ( 𝑉𝑊𝐺 ∈ V )

Proof

Step Hyp Ref Expression
1 uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
3 fvex ( Pairs ‘ 𝑉 ) ∈ V
4 3 pwex 𝒫 ( Pairs ‘ 𝑉 ) ∈ V
5 1 4 eqeltri 𝑃 ∈ V
6 eqid ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) = ( 𝑔𝐺 ↦ ( 2nd𝑔 ) )
7 1 2 6 uspgrsprf1o ( 𝑉𝑊 → ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) : 𝐺1-1-onto𝑃 )
8 f1ovv ( ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) : 𝐺1-1-onto𝑃 → ( 𝐺 ∈ V ↔ 𝑃 ∈ V ) )
9 7 8 syl ( 𝑉𝑊 → ( 𝐺 ∈ V ↔ 𝑃 ∈ V ) )
10 5 9 mpbiri ( 𝑉𝑊𝐺 ∈ V )