Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) |
2 |
|
uspgrsprf.g |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } |
3 |
|
fvex |
⊢ ( Pairs ‘ 𝑉 ) ∈ V |
4 |
3
|
pwex |
⊢ 𝒫 ( Pairs ‘ 𝑉 ) ∈ V |
5 |
1 4
|
eqeltri |
⊢ 𝑃 ∈ V |
6 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) = ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) |
7 |
1 2 6
|
uspgrsprf1o |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) : 𝐺 –1-1-onto→ 𝑃 ) |
8 |
|
f1ovv |
⊢ ( ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) : 𝐺 –1-1-onto→ 𝑃 → ( 𝐺 ∈ V ↔ 𝑃 ∈ V ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝐺 ∈ V ↔ 𝑃 ∈ V ) ) |
10 |
5 9
|
mpbiri |
⊢ ( 𝑉 ∈ 𝑊 → 𝐺 ∈ V ) |