Metamath Proof Explorer


Theorem ustex2sym

Description: In an uniform structure, for any entourage V , there exists a symmetrical entourage smaller than half V . (Contributed by Thierry Arnoux, 16-Jan-2018)

Ref Expression
Assertion ustex2sym UUnifOnXVUwUw-1=wwwV

Proof

Step Hyp Ref Expression
1 ustexsym UUnifOnXvUwUw-1=wwv
2 1 ad4ant13 UUnifOnXVUvUvvVwUw-1=wwv
3 simprl UUnifOnXVUvUvvVwUw-1=wwvw-1=w
4 coss1 wvwwvw
5 coss2 wvvwvv
6 4 5 sstrd wvwwvv
7 6 ad2antll UUnifOnXVUvUvvVwUw-1=wwvwwvv
8 simpllr UUnifOnXVUvUvvVwUw-1=wwvvvV
9 7 8 sstrd UUnifOnXVUvUvvVwUw-1=wwvwwV
10 3 9 jca UUnifOnXVUvUvvVwUw-1=wwvw-1=wwwV
11 10 ex UUnifOnXVUvUvvVwUw-1=wwvw-1=wwwV
12 11 reximdva UUnifOnXVUvUvvVwUw-1=wwvwUw-1=wwwV
13 2 12 mpd UUnifOnXVUvUvvVwUw-1=wwwV
14 ustexhalf UUnifOnXVUvUvvV
15 13 14 r19.29a UUnifOnXVUwUw-1=wwwV