| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ustexsym |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) |
| 2 |
1
|
ad4ant13 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) |
| 3 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ◡ 𝑤 = 𝑤 ) |
| 4 |
|
coss1 |
⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑤 ) ) |
| 5 |
|
coss2 |
⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑣 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
| 6 |
4 5
|
sstrd |
⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
| 7 |
6
|
ad2antll |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
| 8 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) |
| 9 |
7 8
|
sstrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) |
| 10 |
3 9
|
jca |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
| 11 |
10
|
ex |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) → ( ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
| 12 |
11
|
reximdva |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ( ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) ) |
| 13 |
2 12
|
mpd |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |
| 14 |
|
ustexhalf |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) |
| 15 |
13 14
|
r19.29a |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑉 ) ) |