| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplll |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 2 |
|
ustinvel |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ◡ 𝑥 ∈ 𝑈 ) |
| 3 |
2
|
ad4ant13 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ◡ 𝑥 ∈ 𝑈 ) |
| 4 |
|
simplr |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → 𝑥 ∈ 𝑈 ) |
| 5 |
|
ustincl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ◡ 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) → ( ◡ 𝑥 ∩ 𝑥 ) ∈ 𝑈 ) |
| 6 |
1 3 4 5
|
syl3anc |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ( ◡ 𝑥 ∩ 𝑥 ) ∈ 𝑈 ) |
| 7 |
|
ustrel |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → Rel 𝑥 ) |
| 8 |
|
dfrel2 |
⊢ ( Rel 𝑥 ↔ ◡ ◡ 𝑥 = 𝑥 ) |
| 9 |
7 8
|
sylib |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ◡ ◡ 𝑥 = 𝑥 ) |
| 10 |
9
|
ineq1d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ( ◡ ◡ 𝑥 ∩ ◡ 𝑥 ) = ( 𝑥 ∩ ◡ 𝑥 ) ) |
| 11 |
|
cnvin |
⊢ ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ ◡ 𝑥 ∩ ◡ 𝑥 ) |
| 12 |
|
incom |
⊢ ( ◡ 𝑥 ∩ 𝑥 ) = ( 𝑥 ∩ ◡ 𝑥 ) |
| 13 |
10 11 12
|
3eqtr4g |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ) |
| 14 |
13
|
ad4ant13 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ) |
| 15 |
|
inss2 |
⊢ ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑥 |
| 16 |
|
ustssco |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ⊆ ( 𝑥 ∘ 𝑥 ) ) |
| 17 |
16
|
ad4ant13 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → 𝑥 ⊆ ( 𝑥 ∘ 𝑥 ) ) |
| 18 |
|
simpr |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) |
| 19 |
17 18
|
sstrd |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → 𝑥 ⊆ 𝑉 ) |
| 20 |
15 19
|
sstrid |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑉 ) |
| 21 |
|
cnveq |
⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → ◡ 𝑤 = ◡ ( ◡ 𝑥 ∩ 𝑥 ) ) |
| 22 |
|
id |
⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → ( ◡ 𝑤 = 𝑤 ↔ ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ) ) |
| 24 |
|
sseq1 |
⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → ( 𝑤 ⊆ 𝑉 ↔ ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑉 ) ) |
| 25 |
23 24
|
anbi12d |
⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → ( ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ∧ ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑉 ) ) ) |
| 26 |
25
|
rspcev |
⊢ ( ( ( ◡ 𝑥 ∩ 𝑥 ) ∈ 𝑈 ∧ ( ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ∧ ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑉 ) ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉 ) ) |
| 27 |
6 14 20 26
|
syl12anc |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉 ) ) |
| 28 |
|
ustexhalf |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑥 ∈ 𝑈 ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) |
| 29 |
27 28
|
r19.29a |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉 ) ) |