| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssun1 |
⊢ 𝑉 ⊆ ( 𝑉 ∪ ( 𝑉 ∘ 𝑉 ) ) |
| 2 |
|
coires1 |
⊢ ( 𝑉 ∘ ( I ↾ 𝑋 ) ) = ( 𝑉 ↾ 𝑋 ) |
| 3 |
|
ustrel |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → Rel 𝑉 ) |
| 4 |
|
ustssxp |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) |
| 5 |
|
dmss |
⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → dom 𝑉 ⊆ dom ( 𝑋 × 𝑋 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → dom 𝑉 ⊆ dom ( 𝑋 × 𝑋 ) ) |
| 7 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
| 8 |
6 7
|
sseqtrdi |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → dom 𝑉 ⊆ 𝑋 ) |
| 9 |
|
relssres |
⊢ ( ( Rel 𝑉 ∧ dom 𝑉 ⊆ 𝑋 ) → ( 𝑉 ↾ 𝑋 ) = 𝑉 ) |
| 10 |
3 8 9
|
syl2anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( 𝑉 ↾ 𝑋 ) = 𝑉 ) |
| 11 |
2 10
|
eqtrid |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( 𝑉 ∘ ( I ↾ 𝑋 ) ) = 𝑉 ) |
| 12 |
11
|
uneq1d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( ( 𝑉 ∘ ( I ↾ 𝑋 ) ) ∪ ( 𝑉 ∘ 𝑉 ) ) = ( 𝑉 ∪ ( 𝑉 ∘ 𝑉 ) ) ) |
| 13 |
1 12
|
sseqtrrid |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( ( 𝑉 ∘ ( I ↾ 𝑋 ) ) ∪ ( 𝑉 ∘ 𝑉 ) ) ) |
| 14 |
|
coundi |
⊢ ( 𝑉 ∘ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) ) = ( ( 𝑉 ∘ ( I ↾ 𝑋 ) ) ∪ ( 𝑉 ∘ 𝑉 ) ) |
| 15 |
13 14
|
sseqtrrdi |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑉 ∘ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) ) ) |
| 16 |
|
ustdiag |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑉 ) |
| 17 |
|
ssequn1 |
⊢ ( ( I ↾ 𝑋 ) ⊆ 𝑉 ↔ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) = 𝑉 ) |
| 18 |
16 17
|
sylib |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( ( I ↾ 𝑋 ) ∪ 𝑉 ) = 𝑉 ) |
| 19 |
18
|
coeq2d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ( 𝑉 ∘ ( ( I ↾ 𝑋 ) ∪ 𝑉 ) ) = ( 𝑉 ∘ 𝑉 ) ) |
| 20 |
15 19
|
sseqtrd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑉 ∘ 𝑉 ) ) |