Metamath Proof Explorer


Theorem ustssco

Description: In an uniform structure, any entourage V is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018)

Ref Expression
Assertion ustssco U UnifOn X V U V V V

Proof

Step Hyp Ref Expression
1 ssun1 V V V V
2 coires1 V I X = V X
3 ustrel U UnifOn X V U Rel V
4 ustssxp U UnifOn X V U V X × X
5 dmss V X × X dom V dom X × X
6 4 5 syl U UnifOn X V U dom V dom X × X
7 dmxpid dom X × X = X
8 6 7 sseqtrdi U UnifOn X V U dom V X
9 relssres Rel V dom V X V X = V
10 3 8 9 syl2anc U UnifOn X V U V X = V
11 2 10 eqtrid U UnifOn X V U V I X = V
12 11 uneq1d U UnifOn X V U V I X V V = V V V
13 1 12 sseqtrrid U UnifOn X V U V V I X V V
14 coundi V I X V = V I X V V
15 13 14 sseqtrrdi U UnifOn X V U V V I X V
16 ustdiag U UnifOn X V U I X V
17 ssequn1 I X V I X V = V
18 16 17 sylib U UnifOn X V U I X V = V
19 18 coeq2d U UnifOn X V U V I X V = V V
20 15 19 sseqtrd U UnifOn X V U V V V