| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplll |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> U e. ( UnifOn ` X ) ) |
| 2 |
|
ustinvel |
|- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> `' x e. U ) |
| 3 |
2
|
ad4ant13 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> `' x e. U ) |
| 4 |
|
simplr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> x e. U ) |
| 5 |
|
ustincl |
|- ( ( U e. ( UnifOn ` X ) /\ `' x e. U /\ x e. U ) -> ( `' x i^i x ) e. U ) |
| 6 |
1 3 4 5
|
syl3anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> ( `' x i^i x ) e. U ) |
| 7 |
|
ustrel |
|- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> Rel x ) |
| 8 |
|
dfrel2 |
|- ( Rel x <-> `' `' x = x ) |
| 9 |
7 8
|
sylib |
|- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> `' `' x = x ) |
| 10 |
9
|
ineq1d |
|- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> ( `' `' x i^i `' x ) = ( x i^i `' x ) ) |
| 11 |
|
cnvin |
|- `' ( `' x i^i x ) = ( `' `' x i^i `' x ) |
| 12 |
|
incom |
|- ( `' x i^i x ) = ( x i^i `' x ) |
| 13 |
10 11 12
|
3eqtr4g |
|- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> `' ( `' x i^i x ) = ( `' x i^i x ) ) |
| 14 |
13
|
ad4ant13 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> `' ( `' x i^i x ) = ( `' x i^i x ) ) |
| 15 |
|
inss2 |
|- ( `' x i^i x ) C_ x |
| 16 |
|
ustssco |
|- ( ( U e. ( UnifOn ` X ) /\ x e. U ) -> x C_ ( x o. x ) ) |
| 17 |
16
|
ad4ant13 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> x C_ ( x o. x ) ) |
| 18 |
|
simpr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> ( x o. x ) C_ V ) |
| 19 |
17 18
|
sstrd |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> x C_ V ) |
| 20 |
15 19
|
sstrid |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> ( `' x i^i x ) C_ V ) |
| 21 |
|
cnveq |
|- ( w = ( `' x i^i x ) -> `' w = `' ( `' x i^i x ) ) |
| 22 |
|
id |
|- ( w = ( `' x i^i x ) -> w = ( `' x i^i x ) ) |
| 23 |
21 22
|
eqeq12d |
|- ( w = ( `' x i^i x ) -> ( `' w = w <-> `' ( `' x i^i x ) = ( `' x i^i x ) ) ) |
| 24 |
|
sseq1 |
|- ( w = ( `' x i^i x ) -> ( w C_ V <-> ( `' x i^i x ) C_ V ) ) |
| 25 |
23 24
|
anbi12d |
|- ( w = ( `' x i^i x ) -> ( ( `' w = w /\ w C_ V ) <-> ( `' ( `' x i^i x ) = ( `' x i^i x ) /\ ( `' x i^i x ) C_ V ) ) ) |
| 26 |
25
|
rspcev |
|- ( ( ( `' x i^i x ) e. U /\ ( `' ( `' x i^i x ) = ( `' x i^i x ) /\ ( `' x i^i x ) C_ V ) ) -> E. w e. U ( `' w = w /\ w C_ V ) ) |
| 27 |
6 14 20 26
|
syl12anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ x e. U ) /\ ( x o. x ) C_ V ) -> E. w e. U ( `' w = w /\ w C_ V ) ) |
| 28 |
|
ustexhalf |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. x e. U ( x o. x ) C_ V ) |
| 29 |
27 28
|
r19.29a |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. w e. U ( `' w = w /\ w C_ V ) ) |