Metamath Proof Explorer


Theorem ustimasn

Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Assertion ustimasn UUnifOnXVUPXVPX

Proof

Step Hyp Ref Expression
1 imassrn VPranV
2 ustssxp UUnifOnXVUVX×X
3 2 3adant3 UUnifOnXVUPXVX×X
4 rnss VX×XranVranX×X
5 rnxpid ranX×X=X
6 4 5 sseqtrdi VX×XranVX
7 3 6 syl UUnifOnXVUPXranVX
8 1 7 sstrid UUnifOnXVUPXVPX