Metamath Proof Explorer


Theorem ustuni

Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Assertion ustuni UUnifOnXU=X×X

Proof

Step Hyp Ref Expression
1 ustbasel UUnifOnXX×XU
2 ustssxp UUnifOnXuUuX×X
3 2 ralrimiva UUnifOnXuUuX×X
4 pwssb U𝒫X×XuUuX×X
5 3 4 sylibr UUnifOnXU𝒫X×X
6 elpwuni X×XUU𝒫X×XU=X×X
7 6 biimpa X×XUU𝒫X×XU=X×X
8 1 5 7 syl2anc UUnifOnXU=X×X