Metamath Proof Explorer


Theorem uzn0

Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014)

Ref Expression
Assertion uzn0 MranM

Proof

Step Hyp Ref Expression
1 uzf :𝒫
2 ffn :𝒫Fn
3 fvelrnb FnMrankk=M
4 1 2 3 mp2b Mrankk=M
5 uzid kkk
6 5 ne0d kk
7 neeq1 k=MkM
8 6 7 syl5ibcom kk=MM
9 8 rexlimiv kk=MM
10 4 9 sylbi MranM