Metamath Proof Explorer


Theorem uzubico2

Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzubico2.1 φM
uzubico2.2 Z=M
Assertion uzubico2 φxkx+∞kZ

Proof

Step Hyp Ref Expression
1 uzubico2.1 φM
2 uzubico2.2 Z=M
3 1 2 uzubioo2 φxkx+∞kZ
4 ioossico x+∞x+∞
5 ssrexv x+∞x+∞kx+∞kZkx+∞kZ
6 4 5 ax-mp kx+∞kZkx+∞kZ
7 6 ralimi xkx+∞kZxkx+∞kZ
8 3 7 syl φxkx+∞kZ