Metamath Proof Explorer


Theorem vnex

Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005)

Ref Expression
Assertion vnex ¬xx=V

Proof

Step Hyp Ref Expression
1 nalset ¬xyyx
2 vex yV
3 2 tbt yxyxyV
4 3 albii yyxyyxyV
5 dfcleq x=VyyxyV
6 4 5 bitr4i yyxx=V
7 6 exbii xyyxxx=V
8 1 7 mtbi ¬xx=V