Metamath Proof Explorer


Theorem nalset

Description: No set contains all sets. Theorem 41 of Suppes p. 30. (Contributed by NM, 23-Aug-1993) Remove use of ax-12 and ax-13 . (Revised by BJ, 31-May-2019)

Ref Expression
Assertion nalset ¬xyyx

Proof

Step Hyp Ref Expression
1 alexn xy¬yx¬xyyx
2 ax-sep yzzyzx¬zz
3 elequ1 z=yzyyy
4 elequ1 z=yzxyx
5 elequ1 z=yzzyz
6 elequ2 z=yyzyy
7 5 6 bitrd z=yzzyy
8 7 notbid z=y¬zz¬yy
9 4 8 anbi12d z=yzx¬zzyx¬yy
10 3 9 bibi12d z=yzyzx¬zzyyyx¬yy
11 10 spvv zzyzx¬zzyyyx¬yy
12 pclem6 yyyx¬yy¬yx
13 11 12 syl zzyzx¬zz¬yx
14 2 13 eximii y¬yx
15 1 14 mpgbi ¬xyyx