Metamath Proof Explorer


Theorem vopnbgrelself

Description: A vertex N is a member of its semiopen neighborhood iff there is a loop joining the vertex with itself. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfvopnbgr2.v V = Vtx G
dfvopnbgr2.e E = Edg G
dfvopnbgr2.u U = n V | n G NeighbVtx N e E N = n e = N
Assertion vopnbgrelself N V N U e E e = N

Proof

Step Hyp Ref Expression
1 dfvopnbgr2.v V = Vtx G
2 dfvopnbgr2.e E = Edg G
3 dfvopnbgr2.u U = n V | n G NeighbVtx N e E N = n e = N
4 ibar N V e E N N N e N e N = N e = N N V e E N N N e N e N = N e = N
5 eqid N = N
6 5 jctl e = N N = N e = N
7 6 olcd e = N N N N e N e N = N e = N
8 eqneqall N = N N N N e N e e = N
9 5 8 ax-mp N N N e N e e = N
10 9 3impib N N N e N e e = N
11 simpr N = N e = N e = N
12 10 11 jaoi N N N e N e N = N e = N e = N
13 7 12 impbii e = N N N N e N e N = N e = N
14 13 a1i N V e = N N N N e N e N = N e = N
15 14 rexbidv N V e E e = N e E N N N e N e N = N e = N
16 1 2 3 vopnbgrel N V N U N V e E N N N e N e N = N e = N
17 4 15 16 3bitr4rd N V N U e E e = N