Metamath Proof Explorer


Theorem vrgpfval

Description: The canonical injection from the generating set I to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses vrgpfval.r ˙=~FGI
vrgpfval.u U=varFGrpI
Assertion vrgpfval IVU=jI⟨“j”⟩˙

Proof

Step Hyp Ref Expression
1 vrgpfval.r ˙=~FGI
2 vrgpfval.u U=varFGrpI
3 elex IVIV
4 id i=Ii=I
5 fveq2 i=I~FGi=~FGI
6 5 1 eqtr4di i=I~FGi=˙
7 6 eceq2d i=I⟨“j”⟩~FGi=⟨“j”⟩˙
8 4 7 mpteq12dv i=Iji⟨“j”⟩~FGi=jI⟨“j”⟩˙
9 df-vrgp varFGrp=iVji⟨“j”⟩~FGi
10 vex iV
11 10 mptex ji⟨“j”⟩~FGiV
12 8 9 11 fvmpt3i IVvarFGrpI=jI⟨“j”⟩˙
13 3 12 syl IVvarFGrpI=jI⟨“j”⟩˙
14 2 13 eqtrid IVU=jI⟨“j”⟩˙