Metamath Proof Explorer


Theorem vrgpval

Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses vrgpfval.r ˙=~FGI
vrgpfval.u U=varFGrpI
Assertion vrgpval IVAIUA=⟨“A”⟩˙

Proof

Step Hyp Ref Expression
1 vrgpfval.r ˙=~FGI
2 vrgpfval.u U=varFGrpI
3 1 2 vrgpfval IVU=jI⟨“j”⟩˙
4 3 fveq1d IVUA=jI⟨“j”⟩˙A
5 opeq1 j=Aj=A
6 5 s1eqd j=A⟨“j”⟩=⟨“A”⟩
7 6 eceq1d j=A⟨“j”⟩˙=⟨“A”⟩˙
8 eqid jI⟨“j”⟩˙=jI⟨“j”⟩˙
9 1 fvexi ˙V
10 ecexg ˙V⟨“A”⟩˙V
11 9 10 ax-mp ⟨“A”⟩˙V
12 7 8 11 fvmpt AIjI⟨“j”⟩˙A=⟨“A”⟩˙
13 4 12 sylan9eq IVAIUA=⟨“A”⟩˙