Metamath Proof Explorer


Theorem vrmdval

Description: The value of the generating elements of a free monoid. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypothesis vrmdfval.u U=varFMndI
Assertion vrmdval IVAIUA=⟨“A”⟩

Proof

Step Hyp Ref Expression
1 vrmdfval.u U=varFMndI
2 1 vrmdfval IVU=jI⟨“j”⟩
3 2 adantr IVAIU=jI⟨“j”⟩
4 s1eq j=A⟨“j”⟩=⟨“A”⟩
5 4 adantl IVAIj=A⟨“j”⟩=⟨“A”⟩
6 simpr IVAIAI
7 s1cl AI⟨“A”⟩WordI
8 7 adantl IVAI⟨“A”⟩WordI
9 3 5 6 8 fvmptd IVAIUA=⟨“A”⟩