Metamath Proof Explorer


Theorem vtocl2g

Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995) Remove dependency on ax-10 , ax-11 , and ax-13 . (Revised by Steven Nguyen, 29-Nov-2022)

Ref Expression
Hypotheses vtocl2g.1 x = A φ ψ
vtocl2g.2 y = B ψ χ
vtocl2g.3 φ
Assertion vtocl2g A V B W χ

Proof

Step Hyp Ref Expression
1 vtocl2g.1 x = A φ ψ
2 vtocl2g.2 y = B ψ χ
3 vtocl2g.3 φ
4 elex A V A V
5 2 imbi2d y = B A V ψ A V χ
6 1 3 vtoclg A V ψ
7 5 6 vtoclg B W A V χ
8 4 7 mpan9 A V B W χ