Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocl2g
Metamath Proof Explorer
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM , 25-Apr-1995) Remove dependency on ax-10 , ax-11 , and
ax-13 . (Revised by Steven Nguyen , 29-Nov-2022)
Ref
Expression
Hypotheses
vtocl2g.1
⊢ x = A → φ ↔ ψ
vtocl2g.2
⊢ y = B → ψ ↔ χ
vtocl2g.3
⊢ φ
Assertion
vtocl2g
⊢ A ∈ V ∧ B ∈ W → χ
Proof
Step
Hyp
Ref
Expression
1
vtocl2g.1
⊢ x = A → φ ↔ ψ
2
vtocl2g.2
⊢ y = B → ψ ↔ χ
3
vtocl2g.3
⊢ φ
4
elex
⊢ A ∈ V → A ∈ V
5
2
imbi2d
⊢ y = B → A ∈ V → ψ ↔ A ∈ V → χ
6
1 3
vtoclg
⊢ A ∈ V → ψ
7
5 6
vtoclg
⊢ B ∈ W → A ∈ V → χ
8
4 7
mpan9
⊢ A ∈ V ∧ B ∈ W → χ