Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The universal class vtocl2g  
				
		 
		
			
		 
		Description:   Implicit substitution of 2 classes for 2 setvar variables.  (Contributed by NM , 25-Apr-1995)   Remove dependency on ax-10  , ax-11  , and
       ax-13  .  (Revised by Steven Nguyen , 29-Nov-2022) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						vtocl2g.1    ⊢   x  =  A    →    φ   ↔   ψ         
					 
					
						vtocl2g.2    ⊢   y  =  B    →    ψ   ↔   χ         
					 
					
						vtocl2g.3   ⊢   φ      
					 
				
					Assertion 
					vtocl2g    ⊢    A  ∈  V    ∧   B  ∈  W     →   χ        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							vtocl2g.1   ⊢   x  =  A    →    φ   ↔   ψ         
						
							2 
								
							 
							vtocl2g.2   ⊢   y  =  B    →    ψ   ↔   χ         
						
							3 
								
							 
							vtocl2g.3  ⊢   φ      
						
							4 
								
							 
							elex   ⊢   A  ∈  V    →   A  ∈  V         
						
							5 
								2 
							 
							imbi2d   ⊢   y  =  B    →     A  ∈  V    →   ψ    ↔    A  ∈  V    →   χ          
						
							6 
								1  3 
							 
							vtoclg   ⊢   A  ∈  V    →   ψ        
						
							7 
								5  6 
							 
							vtoclg   ⊢   B  ∈  W    →    A  ∈  V    →   χ         
						
							8 
								4  7 
							 
							mpan9   ⊢    A  ∈  V    ∧   B  ∈  W     →   χ