Metamath Proof Explorer


Theorem vtxdginducedm1lem2

Description: Lemma 2 for vtxdginducedm1 : the domain of the edge function in the induced subgraph S of a pseudograph G obtained by removing one vertex N . (Contributed by AV, 16-Dec-2021)

Ref Expression
Hypotheses vtxdginducedm1.v V=VtxG
vtxdginducedm1.e E=iEdgG
vtxdginducedm1.k K=VN
vtxdginducedm1.i I=idomE|NEi
vtxdginducedm1.p P=EI
vtxdginducedm1.s S=KP
Assertion vtxdginducedm1lem2 domiEdgS=I

Proof

Step Hyp Ref Expression
1 vtxdginducedm1.v V=VtxG
2 vtxdginducedm1.e E=iEdgG
3 vtxdginducedm1.k K=VN
4 vtxdginducedm1.i I=idomE|NEi
5 vtxdginducedm1.p P=EI
6 vtxdginducedm1.s S=KP
7 1 2 3 4 5 6 vtxdginducedm1lem1 iEdgS=P
8 7 5 eqtri iEdgS=EI
9 8 dmeqi domiEdgS=domEI
10 4 ssrab3 IdomE
11 ssdmres IdomEdomEI=I
12 10 11 mpbi domEI=I
13 9 12 eqtri domiEdgS=I