Metamath Proof Explorer


Theorem vtxdginducedm1lem3

Description: Lemma 3 for vtxdginducedm1 : an edge in the induced subgraph S of a pseudograph G obtained by removing one vertex N . (Contributed by AV, 16-Dec-2021)

Ref Expression
Hypotheses vtxdginducedm1.v V=VtxG
vtxdginducedm1.e E=iEdgG
vtxdginducedm1.k K=VN
vtxdginducedm1.i I=idomE|NEi
vtxdginducedm1.p P=EI
vtxdginducedm1.s S=KP
Assertion vtxdginducedm1lem3 HIiEdgSH=EH

Proof

Step Hyp Ref Expression
1 vtxdginducedm1.v V=VtxG
2 vtxdginducedm1.e E=iEdgG
3 vtxdginducedm1.k K=VN
4 vtxdginducedm1.i I=idomE|NEi
5 vtxdginducedm1.p P=EI
6 vtxdginducedm1.s S=KP
7 1 2 3 4 5 6 vtxdginducedm1lem1 iEdgS=P
8 7 5 eqtri iEdgS=EI
9 8 fveq1i iEdgSH=EIH
10 fvres HIEIH=EH
11 9 10 eqtrid HIiEdgSH=EH