| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdginducedm1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
vtxdginducedm1.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
vtxdginducedm1.k |
⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) |
| 4 |
|
vtxdginducedm1.i |
⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
| 5 |
|
vtxdginducedm1.p |
⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) |
| 6 |
|
vtxdginducedm1.s |
⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 |
| 7 |
1 2 3 4 5 6
|
vtxdginducedm1lem1 |
⊢ ( iEdg ‘ 𝑆 ) = 𝑃 |
| 8 |
7 5
|
eqtri |
⊢ ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐼 ) |
| 9 |
8
|
fveq1i |
⊢ ( ( iEdg ‘ 𝑆 ) ‘ 𝐻 ) = ( ( 𝐸 ↾ 𝐼 ) ‘ 𝐻 ) |
| 10 |
|
fvres |
⊢ ( 𝐻 ∈ 𝐼 → ( ( 𝐸 ↾ 𝐼 ) ‘ 𝐻 ) = ( 𝐸 ‘ 𝐻 ) ) |
| 11 |
9 10
|
eqtrid |
⊢ ( 𝐻 ∈ 𝐼 → ( ( iEdg ‘ 𝑆 ) ‘ 𝐻 ) = ( 𝐸 ‘ 𝐻 ) ) |