Metamath Proof Explorer


Theorem vtxdushgrfvedglem

Description: Lemma for vtxdushgrfvedg and vtxdusgrfvedg . (Contributed by AV, 12-Dec-2020) (Proof shortened by AV, 5-May-2021)

Ref Expression
Hypotheses vtxdushgrfvedg.v V=VtxG
vtxdushgrfvedg.e E=EdgG
Assertion vtxdushgrfvedglem GUSHGraphUVidomiEdgG|UiEdgGi=eE|Ue

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v V=VtxG
2 vtxdushgrfvedg.e E=EdgG
3 fvex iEdgGV
4 3 dmex domiEdgGV
5 4 rabex idomiEdgG|UiEdgGiV
6 5 a1i GUSHGraphUVidomiEdgG|UiEdgGiV
7 eqid iEdgG=iEdgG
8 eqid idomiEdgG|UiEdgGi=idomiEdgG|UiEdgGi
9 eleq2w e=cUeUc
10 9 cbvrabv eE|Ue=cE|Uc
11 eqid xidomiEdgG|UiEdgGiiEdgGx=xidomiEdgG|UiEdgGiiEdgGx
12 2 7 1 8 10 11 ushgredgedg GUSHGraphUVxidomiEdgG|UiEdgGiiEdgGx:idomiEdgG|UiEdgGi1-1 ontoeE|Ue
13 6 12 hasheqf1od GUSHGraphUVidomiEdgG|UiEdgGi=eE|Ue