Metamath Proof Explorer


Theorem wdomd

Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015)

Ref Expression
Hypotheses wdomd.b φBW
wdomd.o φxAyBx=X
Assertion wdomd φA*B

Proof

Step Hyp Ref Expression
1 wdomd.b φBW
2 wdomd.o φxAyBx=X
3 abrexexg BWx|yBx=XV
4 1 3 syl φx|yBx=XV
5 2 ex φxAyBx=X
6 5 alrimiv φxxAyBx=X
7 ssab Ax|yBx=XxxAyBx=X
8 6 7 sylibr φAx|yBx=X
9 4 8 ssexd φAV
10 9 1 2 wdom2d φA*B