Metamath Proof Explorer


Theorem wdomen2

Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion wdomen2 ABC*AC*B

Proof

Step Hyp Ref Expression
1 id C*AC*A
2 endom ABAB
3 domwdom ABA*B
4 2 3 syl ABA*B
5 wdomtr C*AA*BC*B
6 1 4 5 syl2anr ABC*AC*B
7 id C*BC*B
8 ensym ABBA
9 endom BABA
10 domwdom BAB*A
11 8 9 10 3syl ABB*A
12 wdomtr C*BB*AC*A
13 7 11 12 syl2anr ABC*BC*A
14 6 13 impbida ABC*AC*B