Metamath Proof Explorer


Theorem domwdom

Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion domwdom XYX*Y

Proof

Step Hyp Ref Expression
1 neqne ¬X=X
2 1 adantl XY¬X=X
3 reldom Rel
4 3 brrelex1i XYXV
5 0sdomg XVXX
6 4 5 syl XYXX
7 6 adantr XY¬X=XX
8 2 7 mpbird XY¬X=X
9 simpl XY¬X=XY
10 fodomr XXYyy:YontoX
11 8 9 10 syl2anc XY¬X=yy:YontoX
12 11 ex XY¬X=yy:YontoX
13 12 orrd XYX=yy:YontoX
14 3 brrelex2i XYYV
15 brwdom YVX*YX=yy:YontoX
16 14 15 syl XYX*YX=yy:YontoX
17 13 16 mpbird XYX*Y