Metamath Proof Explorer


Theorem domwdom

Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion domwdom ( 𝑋𝑌𝑋* 𝑌 )

Proof

Step Hyp Ref Expression
1 neqne ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ )
2 1 adantl ( ( 𝑋𝑌 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ )
3 reldom Rel ≼
4 3 brrelex1i ( 𝑋𝑌𝑋 ∈ V )
5 0sdomg ( 𝑋 ∈ V → ( ∅ ≺ 𝑋𝑋 ≠ ∅ ) )
6 4 5 syl ( 𝑋𝑌 → ( ∅ ≺ 𝑋𝑋 ≠ ∅ ) )
7 6 adantr ( ( 𝑋𝑌 ∧ ¬ 𝑋 = ∅ ) → ( ∅ ≺ 𝑋𝑋 ≠ ∅ ) )
8 2 7 mpbird ( ( 𝑋𝑌 ∧ ¬ 𝑋 = ∅ ) → ∅ ≺ 𝑋 )
9 simpl ( ( 𝑋𝑌 ∧ ¬ 𝑋 = ∅ ) → 𝑋𝑌 )
10 fodomr ( ( ∅ ≺ 𝑋𝑋𝑌 ) → ∃ 𝑦 𝑦 : 𝑌onto𝑋 )
11 8 9 10 syl2anc ( ( 𝑋𝑌 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑦 𝑦 : 𝑌onto𝑋 )
12 11 ex ( 𝑋𝑌 → ( ¬ 𝑋 = ∅ → ∃ 𝑦 𝑦 : 𝑌onto𝑋 ) )
13 12 orrd ( 𝑋𝑌 → ( 𝑋 = ∅ ∨ ∃ 𝑦 𝑦 : 𝑌onto𝑋 ) )
14 3 brrelex2i ( 𝑋𝑌𝑌 ∈ V )
15 brwdom ( 𝑌 ∈ V → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑦 𝑦 : 𝑌onto𝑋 ) ) )
16 14 15 syl ( 𝑋𝑌 → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑦 𝑦 : 𝑌onto𝑋 ) ) )
17 13 16 mpbird ( 𝑋𝑌𝑋* 𝑌 )