Metamath Proof Explorer


Theorem domwdom

Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion domwdom
|- ( X ~<_ Y -> X ~<_* Y )

Proof

Step Hyp Ref Expression
1 neqne
 |-  ( -. X = (/) -> X =/= (/) )
2 1 adantl
 |-  ( ( X ~<_ Y /\ -. X = (/) ) -> X =/= (/) )
3 reldom
 |-  Rel ~<_
4 3 brrelex1i
 |-  ( X ~<_ Y -> X e. _V )
5 0sdomg
 |-  ( X e. _V -> ( (/) ~< X <-> X =/= (/) ) )
6 4 5 syl
 |-  ( X ~<_ Y -> ( (/) ~< X <-> X =/= (/) ) )
7 6 adantr
 |-  ( ( X ~<_ Y /\ -. X = (/) ) -> ( (/) ~< X <-> X =/= (/) ) )
8 2 7 mpbird
 |-  ( ( X ~<_ Y /\ -. X = (/) ) -> (/) ~< X )
9 simpl
 |-  ( ( X ~<_ Y /\ -. X = (/) ) -> X ~<_ Y )
10 fodomr
 |-  ( ( (/) ~< X /\ X ~<_ Y ) -> E. y y : Y -onto-> X )
11 8 9 10 syl2anc
 |-  ( ( X ~<_ Y /\ -. X = (/) ) -> E. y y : Y -onto-> X )
12 11 ex
 |-  ( X ~<_ Y -> ( -. X = (/) -> E. y y : Y -onto-> X ) )
13 12 orrd
 |-  ( X ~<_ Y -> ( X = (/) \/ E. y y : Y -onto-> X ) )
14 3 brrelex2i
 |-  ( X ~<_ Y -> Y e. _V )
15 brwdom
 |-  ( Y e. _V -> ( X ~<_* Y <-> ( X = (/) \/ E. y y : Y -onto-> X ) ) )
16 14 15 syl
 |-  ( X ~<_ Y -> ( X ~<_* Y <-> ( X = (/) \/ E. y y : Y -onto-> X ) ) )
17 13 16 mpbird
 |-  ( X ~<_ Y -> X ~<_* Y )