Metamath Proof Explorer


Theorem wdompwdom

Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion wdompwdom X*Y𝒫X𝒫Y

Proof

Step Hyp Ref Expression
1 relwdom Rel*
2 1 brrelex2i X*YYV
3 2 pwexd X*Y𝒫YV
4 0ss Y
5 4 sspwi 𝒫𝒫Y
6 ssdomg 𝒫YV𝒫𝒫Y𝒫𝒫Y
7 3 5 6 mpisyl X*Y𝒫𝒫Y
8 pweq X=𝒫X=𝒫
9 8 breq1d X=𝒫X𝒫Y𝒫𝒫Y
10 7 9 imbitrrid X=X*Y𝒫X𝒫Y
11 brwdomn0 XX*Yzz:YontoX
12 vex zV
13 fopwdom zVz:YontoX𝒫X𝒫Y
14 12 13 mpan z:YontoX𝒫X𝒫Y
15 14 exlimiv zz:YontoX𝒫X𝒫Y
16 11 15 biimtrdi XX*Y𝒫X𝒫Y
17 10 16 pm2.61ine X*Y𝒫X𝒫Y