Metamath Proof Explorer


Theorem fopwdom

Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 24-Jun-2015) (Revised by AV, 18-Sep-2021)

Ref Expression
Assertion fopwdom FVF:AontoB𝒫B𝒫A

Proof

Step Hyp Ref Expression
1 imassrn F-1aranF-1
2 dfdm4 domF=ranF-1
3 fof F:AontoBF:AB
4 3 fdmd F:AontoBdomF=A
5 2 4 eqtr3id F:AontoBranF-1=A
6 1 5 sseqtrid F:AontoBF-1aA
7 6 adantl FVF:AontoBF-1aA
8 cnvexg FVF-1V
9 8 adantr FVF:AontoBF-1V
10 imaexg F-1VF-1aV
11 elpwg F-1aVF-1a𝒫AF-1aA
12 9 10 11 3syl FVF:AontoBF-1a𝒫AF-1aA
13 7 12 mpbird FVF:AontoBF-1a𝒫A
14 13 a1d FVF:AontoBa𝒫BF-1a𝒫A
15 imaeq2 F-1a=F-1bFF-1a=FF-1b
16 15 adantl FVF:AontoBa𝒫Bb𝒫BF-1a=F-1bFF-1a=FF-1b
17 simpllr FVF:AontoBa𝒫Bb𝒫BF-1a=F-1bF:AontoB
18 simplrl FVF:AontoBa𝒫Bb𝒫BF-1a=F-1ba𝒫B
19 18 elpwid FVF:AontoBa𝒫Bb𝒫BF-1a=F-1baB
20 foimacnv F:AontoBaBFF-1a=a
21 17 19 20 syl2anc FVF:AontoBa𝒫Bb𝒫BF-1a=F-1bFF-1a=a
22 simplrr FVF:AontoBa𝒫Bb𝒫BF-1a=F-1bb𝒫B
23 22 elpwid FVF:AontoBa𝒫Bb𝒫BF-1a=F-1bbB
24 foimacnv F:AontoBbBFF-1b=b
25 17 23 24 syl2anc FVF:AontoBa𝒫Bb𝒫BF-1a=F-1bFF-1b=b
26 16 21 25 3eqtr3d FVF:AontoBa𝒫Bb𝒫BF-1a=F-1ba=b
27 26 ex FVF:AontoBa𝒫Bb𝒫BF-1a=F-1ba=b
28 imaeq2 a=bF-1a=F-1b
29 27 28 impbid1 FVF:AontoBa𝒫Bb𝒫BF-1a=F-1ba=b
30 29 ex FVF:AontoBa𝒫Bb𝒫BF-1a=F-1ba=b
31 rnexg FVranFV
32 forn F:AontoBranF=B
33 32 eleq1d F:AontoBranFVBV
34 31 33 syl5ibcom FVF:AontoBBV
35 34 imp FVF:AontoBBV
36 35 pwexd FVF:AontoB𝒫BV
37 dmfex FVF:ABAV
38 3 37 sylan2 FVF:AontoBAV
39 38 pwexd FVF:AontoB𝒫AV
40 14 30 36 39 dom3d FVF:AontoB𝒫B𝒫A