Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 , equivalent to canth ). (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | canthwdom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw | |
|
2 | ne0i | |
|
3 | 1 2 | mp1i | |
4 | brwdomn0 | |
|
5 | 3 4 | syl | |
6 | 5 | ibi | |
7 | relwdom | |
|
8 | 7 | brrelex2i | |
9 | foeq2 | |
|
10 | pweq | |
|
11 | foeq3 | |
|
12 | 10 11 | syl | |
13 | 9 12 | bitrd | |
14 | 13 | notbid | |
15 | vex | |
|
16 | 15 | canth | |
17 | 14 16 | vtoclg | |
18 | 8 17 | syl | |
19 | 18 | nexdv | |
20 | 6 19 | pm2.65i | |