Metamath Proof Explorer


Theorem canthwdom

Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 , equivalent to canth ). (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion canthwdom ¬𝒫A*A

Proof

Step Hyp Ref Expression
1 0elpw 𝒫A
2 ne0i 𝒫A𝒫A
3 1 2 mp1i 𝒫A*A𝒫A
4 brwdomn0 𝒫A𝒫A*Aff:Aonto𝒫A
5 3 4 syl 𝒫A*A𝒫A*Aff:Aonto𝒫A
6 5 ibi 𝒫A*Aff:Aonto𝒫A
7 relwdom Rel*
8 7 brrelex2i 𝒫A*AAV
9 foeq2 x=Af:xonto𝒫xf:Aonto𝒫x
10 pweq x=A𝒫x=𝒫A
11 foeq3 𝒫x=𝒫Af:Aonto𝒫xf:Aonto𝒫A
12 10 11 syl x=Af:Aonto𝒫xf:Aonto𝒫A
13 9 12 bitrd x=Af:xonto𝒫xf:Aonto𝒫A
14 13 notbid x=A¬f:xonto𝒫x¬f:Aonto𝒫A
15 vex xV
16 15 canth ¬f:xonto𝒫x
17 14 16 vtoclg AV¬f:Aonto𝒫A
18 8 17 syl 𝒫A*A¬f:Aonto𝒫A
19 18 nexdv 𝒫A*A¬ff:Aonto𝒫A
20 6 19 pm2.65i ¬𝒫A*A