Metamath Proof Explorer


Theorem wdomref

Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion wdomref XVX*X

Proof

Step Hyp Ref Expression
1 resiexg XVIXV
2 f1oi IX:X1-1 ontoX
3 f1ofo IX:X1-1 ontoXIX:XontoX
4 2 3 ax-mp IX:XontoX
5 fowdom IXVIX:XontoXX*X
6 1 4 5 sylancl XVX*X